Advertisement
Editorial| Volume 46, ISSUE 3, 101851, June 2023

Download started.

Ok

Keratoconus detection with a focus on new indices and techniques

      Early and accurate detection of Keratoconus (KC) provides opportunities to address adverse visual consequences, reduces the likelihood of keratoplasty, and offers collagen crosslinking (CXL) as a treatment to potentially slow progression [
      • Santodomingo-Rubido J.
      • Carracedo G.
      • Suzaki A.
      • Villa-Collar C.
      • Vincent S.J.
      • Wolffsohn J.S.
      Keratoconus: An updated review.
      ].
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Santodomingo-Rubido J.
        • Carracedo G.
        • Suzaki A.
        • Villa-Collar C.
        • Vincent S.J.
        • Wolffsohn J.S.
        Keratoconus: An updated review.
        Cont Lens Anterior Eye. 2022; 45: 101559
        • Rabinowitz Y.S.
        Corneal topography.
        Curr Opin Ophthalmol. 1995; 6: 57-62
        • Piñero D.P.
        • Nieto J.C.
        • Lopez-Miguel A.
        Characterization of corneal structure in keratoconus.
        J Cataract Refract Surg. 2012; 38: 2167-2183
        • Li Y.
        • Tan O.u.
        • Brass R.
        • Weiss J.L.
        • Huang D.
        Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes.
        Ophthalmology. 2012; 119: 2425-2433
        • Salomão M.Q.
        • Hofling-Lima A.L.
        • Gomes Esporcatte L.P.
        • Correa F.F.
        • Meneses E.F.
        • Li Y.
        • et al.
        Corneal ectasia detection by epithelial pattern standard deviation from OCT.
        J Cataract Refract Surg. 2023; 49: 190-194
        • Serrao S.
        • Lombardo G.
        • Calì C.
        • Lombardo M.
        Role of corneal epithelial thickness mapping in the evaluation of keratoconus.
        Cont Lens Anterior Eye. 2019; 42: 662-665
        • Hwang E.S.
        • Perez-Straziota C.E.
        • Kim S.W.
        • Santhiago M.R.
        • Randleman J.B.
        Distinguishing highly asymmetric keratoconus eyes using combined scheimpflug and spectral-domain OCT analysis.
        Ophthalmology. 2018; 125: 1862-1871
        • Chen X.
        • Zhao J.
        • Iselin K.C.
        • Borroni D.
        • Romano D.
        • Gokul A.
        • et al.
        Keratoconus detection of changes using deep learning of colour-coded maps.
        BMJ Open Ophthalmol. 2021; 6: e000824
        • Kamiya K.
        • Ayatsuka Y.
        • Kato Y.
        • Fujimura F.
        • Takahashi M.
        • Shoji N.
        • et al.
        Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study.
        BMJ Open. 2019; 9: e031313
        • Cao K.e.
        • Verspoor K.
        • Sahebjada S.
        • Baird P.N.
        Evaluating the performance of various machine learning algorithms to detect subclinical keratoconus.
        Transl Vis Sci Technol. 2020; 9: 24
        • Lopes B.T.
        • Ramos I.C.
        • Salomão M.Q.
        • Guerra F.P.
        • Schallhorn S.C.
        • Schallhorn J.M.
        • et al.
        Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence.
        Am J Ophthalmol. 2018; 195: 223-232
        • Almeida Jr G.C.
        • Guido R.C.
        • Balarin Silva H.M.
        • Brandão C.C.
        • de Mattos L.C.
        • Lopes B.T.
        • et al.
        New artificial intelligence index based on Scheimpflug corneal tomography to distinguish subclinical keratoconus from healthy corneas.
        J Cataract Refract Surg. 2022; 48: 1168-1174
        • Saad A.
        • Gatinel D.
        Topographic and tomographic properties of forme fruste keratoconus corneas.
        Invest Ophthalmol Vis Sci. 2010; 51: 5546-5555
        • Reddy J.C.
        • Bhamidipati P.
        • Dwivedi S.
        • Dhara K.K.
        • Joshi V.
        • Hasnat Ali M.
        • et al.
        KEDOP: Keratoconus early detection of progression using tomography images.
        Eur J Ophthalmol. 2022; 32: 2554-2564
        • Vinciguerra R.
        • Ambrósio R.
        • Elsheikh A.
        • Roberts C.J.
        • Lopes B.
        • Morenghi E.
        • et al.
        Detection of keratoconus with a new biomechanical index.
        J Refract Surg. 2016; 32: 803-810
        • Tian L.
        • Ko M.W.L.
        • Wang L.-k.
        • Zhang J.-Y.
        • Li T.-J.
        • Huang Y.-F.
        • et al.
        Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes.
        J Refract Surg. 2014; 30: 785-791
        • Ambrósio R.
        • Klyce S.D.
        • Wilson S.E.
        Corneal topographic and pachymetric screening of keratorefractive patients.
        J Refract Surg (Thorofare, NJ: 1995). 2003; 19: 24-29
        • Shah S.
        • Laiquzzaman M.
        Comparison of corneal biomechanics in pre and post-refractive surgery and keratoconic eyes by Ocular Response Analyser.
        Cont Lens Anterior Eye. 2009; 32: 129-132
        • Hassan Z.
        • Modis L.
        • Szalai E.
        • Berta A.
        • Nemeth G.
        Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery.
        Cont Lens Anterior Eye. 2014; 37: 337-341
        • Sedaghat M.R.
        • Momeni-Moghaddam H.
        • Heravian J.
        • Ansari A.
        • Shayanfar H.
        • Moshirfar M.
        Detection ability of corneal biomechanical parameters for early diagnosis of ectasia.
        Eye (Lond). 2022;
        • Salomão M.Q.
        • Hofling-Lima A.L.
        • Gomes Esporcatte L.P.
        • Lopes B.
        • Vinciguerra R.
        • Vinciguerra P.
        • et al.
        The role of corneal biomechanics for the evaluation of ectasia patients.
        Int J Environ Res Public Health. 2020; 17: 2113
        • Ambrósio R.
        • Machado A.P.
        • Leão E.
        • Lyra J.M.G.
        • Salomão M.Q.
        • Esporcatte L.G.P.
        • et al.
        Optimized artificial intelligence for enhanced ectasia detection using Scheimpflug-based corneal tomography and biomechanical data.
        Am J Ophthalmol. 2023; 251: 126-142
        • Padmanabhan P.
        • Lopes B.T.
        • Eliasy A.
        • Abass A.
        • Vinciguerra R.
        • Vinciguerra P.
        • et al.
        Evaluation of corneal biomechanical behavior in vivo for healthy and keratoconic eyes using the stress-strain index.
        J Cataract Refract Surg. 2022; 48: 1162-1167
        • Chen S.
        • Li X.-Y.
        • Jin J.-J.
        • Shen R.-J.
        • Mao J.-Y.
        • Cheng F.-F.
        • et al.
        Genetic screening revealed latent keratoconus in asymptomatic individuals.
        Front Cell Dev Biol. 2021; 9650344