Advertisement

Features and influences on the normal tear evaporation rate

Published:January 06, 2023DOI:https://doi.org/10.1016/j.clae.2022.101809

      Abstract

      Tear evaporation is a normal physiological phenomenon that has an important role in regulating blink activity and tear production. An altered tear evaporation rate (TER) is a defining characteristic of evaporative dry eye disease (DED), and the measurement of tear evaporation is a useful clinical test for diagnosis. Reported values for a normal TER cover a broad range, which may be due to the influence of ocular, environmental, and systemic factors. For improved disease diagnosis, a fuller understanding of the normal TER range is essential. This paper reports on a literature review of the current knowledge of these normal influences on TER.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yu J.
        • Asche C.V.
        • Fairchild C.J.
        The economic burden of dry eye disease in the United States: a decision tree analysis.
        Cornea. 2011; 30: 379-387
        • Lemp M.A.
        • Crews L.A.
        • Bron A.J.
        • Foulks G.N.
        • Sullivan B.D.
        Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study.
        Cornea. 2012; 31: 472-478
        • Rohit A.
        • Ehrmann K.
        • Naduvilath T.
        • Willcox M.
        • Stapleton F.
        Validating a new device for measuring tear evaporation rates.
        Ophthalmic Physiol Opt. 2014; 34: 53-62
        • Wong S.
        • Murphy P.J.
        • Jones L.
        Tear evaporation rates: What does the literature tell us?.
        Cont Lens Anterior Eye. 2018; 41: 297-306
        • Craig J.P.
        • Singh I.
        • Tomlinson A.
        • Morgan P.B.
        • Efron N.
        The role of tear physiology in ocular surface temperature.
        Eye. 2000; 14: 635-641
        • Tan J.-H.
        • Ng E.Y.K.
        • Rajendra Acharya U.
        • Chee C.
        Infrared thermography on ocular surface temperature: a review.
        Infrared Phys Technol. 2009; 52: 97-108
        • Girard F.
        • Antoni M.
        • Sefiane K.
        Infrared thermography investigation of an evaporating sessile water droplet on heated substrates.
        Langmuir. 2010; 26: 4576-4580
        • Nagata Y.
        • Usui K.
        • Bonn M.
        Molecular mechanism of water evaporation.
        Phys Rev Lett. 2015; 115236102
        • Cunningham R.
        • Brann Jr, J.
        • Fleming G.
        Factors affecting the evaporation of water from droplets in airblast spraying.
        J Econ Entomol. 1962; 55: 192-199
        • Lurie M.
        • Michailoff N.
        Evaporation from free water surface.
        Ind Eng Chem. 1936; 28: 345-349
        • Davies J.F.
        • Haddrell A.E.
        • Reid J.P.
        Time-resolved measurements of the evaporation of volatile components from single aerosol droplets.
        Aerosol Sci Tech. 2012; 46: 666-677
        • Maatar A.
        • Chikh S.
        • Saada M.A.
        • Tadrist L.
        Transient effects on sessile droplet evaporation of volatile liquids.
        Int J Heat Mass Transf. 2015; 86: 212-220
        • Galeev A.
        • Salin A.
        • Ponikarov S.
        Numerical simulation of evaporation of volatile liquids.
        J Loss Prev Process Indust. 2015; 38: 39-49
        • Zhakhovskii V.V.
        • Anisimov S.I.
        Molecular-dynamics simulation of evaporation of a liquid.
        JETP. 1997; 84: 734-745
        • O'Hare K.D.
        • Spedding P.L.
        Evaporation of a binary liquid mixture.
        Chem Engin J. 1992; 48: 1-9
        • Ding J.
        • Kim Y.H.
        • Sarah M.Y.
        • Graham A.D.
        • Li W.
        • Lin M.C.
        Ocular surface cooling rate associated with tear film characteristics and the maximum interblink period.
        Sci Rep. 2021; 11: 15030
        • Tomlinson A.
        • Trees G.R.
        • Occhipinti J.R.
        Tear production and evaporation in the normal eye.
        Ophthalmic Physiol Opt. 1991; 11: 44-47
        • Purslow C.
        • Wolffsohn J.
        The relation between physical properties of the anterior eye and ocular surface temperature.
        Optom Vis Sci. 2007; 84: 197-201
        • Gonzalez-Gonzalez O.
        • Bech F.
        • Gallar J.
        • Merayo-Lloves J.
        • Belmonte C.
        Functional properties of sensory nerve terminals of the mouse cornea.
        Invest Ophthalmol Vis Sci. 2017; 58: 404-415
        • Gallar J.
        • Pozo M.
        • Tuckett R.
        • Belmonte C.
        Response of sensory units with unmyelinated fibres to mechanical, thermal and chemical stimulation of the cat's cornea.
        J Physiol. 1993; 468: 609-622
        • Hirata H.
        • Meng I.D.
        Cold-sensitive corneal afferents respond to a variety of ocular stimuli central to tear production: implications for dry eye disease.
        Invest Ophthalmol Vis Sci. 2010; 51: 3969-3976
        • Belmonte C.
        • Aracil A.
        • Acosta M.C.
        • Luna C.
        • Gallar J.
        Nerves and sensations from the eye surface.
        Ocul Surf. 2004; 2: 248-253
        • Foulks G.N.
        • Bron A.J.
        Meibomian gland dysfunction: a clinical scheme for description, diagnosis, classification, and grading.
        Ocul Surf. 2003; 1: 107-126
        • Goto E.
        • Endo K.
        • Suzuki A.
        • Fujikura Y.
        • Matsumoto Y.
        • Tsubota K.
        Tear evaporation dynamics in normal subjects and subjects with obstructive meibomian gland dysfunction.
        Invest Ophthalmol Vis Sci. 2003; 44: 533-539
        • Wolffsohn J.S.
        • Arita R.
        • Chalmers R.
        • Djalilian A.
        • Dogru M.
        • Dumbleton K.
        • et al.
        TFOS DEWS II diagnostic methodology report.
        Ocul Surf. 2017; 15: 539-574
        • Craig J.P.
        • Tomlinson ALAN
        Importance of the lipid layer in human tear film stability and evaporation.
        Optom Vis Sci. 1997; 74: 8-13
        • Blackie C.A.
        • Solomon J.D.
        • Scaffidi R.C.
        • Greiner J.V.
        • Lemp M.A.
        • Korb D.R.
        The relationship between dry eye symptoms and lipid layer thickness.
        Cornea. 2009; 28: 789-794
        • Nichols K.K.
        • Foulks G.N.
        • Bron A.J.
        • Glasgow B.J.
        • Dogru M.
        • Tsubota K.
        • et al.
        The international workshop on meibomian gland dysfunction: executive summary.
        Invest Ophthalmol Vis Sci. 2011; 52: 1922
        • Tsubota K.
        • Yamada M.
        Tear evaporation from the ocular surface.
        Invest Ophthalmol Vis Sci. 1992; 33: 2942-2950
        • Lemp M.A.
        • Foulks G.N.
        The definition and classification of dry eye disease.
        Ocul Surf. 2007; 5: 75-92
        • Tsubota K.
        • Nakamori K.
        Effects of ocular surface area and blink rate on tear dynamics.
        Arch Ophthalmol. 1995; 113: 155-158
        • Pansell T.
        • Porsblad M.
        • Abdi S.
        The effect of vertical gaze position on ocular tear film stability.
        Clin Exp Optom. 2007; 90: 176-181
        • Nielsen P.K.
        • Søgaard K.
        • Skotte J.
        • Wolkoff P.
        Ocular surface area and human eye blink frequency during VDU work: the effect of monitor position and task.
        Eur J Appl Physiol. 2008; 103: 1-7
        • Nakamori K.
        • Odawara M.
        • Nakajima T.
        • Mizutani T.
        • Tsubota K.
        Blinking is controlled primarily by ocular surface conditions.
        Am J Ophthalmol. 1997; 124: 24-30
        • Kessel L.
        • Johnson L.
        • Arvidsson H.
        • Larsen M.
        The relationship between body and ambient temperature and corneal temperature.
        Invest Ophthalmol Vis Sci. 2010; 51: 6593-6597
        • Schwartz B.
        Environmental temperature and the ocular temperature gradient.
        Arch Ophthalmol. 1965; 74: 237-243
        • Gugleta K.
        • Orgül S.
        • Flammer J.
        Is corneal temperature correlated with blood-flow velocity in the ophthalmic artery?.
        Curr Eye Res. 1999; 19: 496-501
        • Vogel B.
        • Wagner H.
        • Gmoser J.
        • Wörner A.
        • Löschberger A.
        • Peters L.
        • et al.
        Touch-free measurement of body temperature using close-up thermography of the ocular surface.
        MethodsX. 2016; 3: 407-416
        • Butovich I.A.
        • Arciniega J.C.
        • Wojtowicz J.C.
        Meibomian lipid films and the impact of temperature.
        Invest Ophthalmol Vis Sci. 2010; 51: 5508-5518
        • Dursch T.J.
        • Li W.
        • Taraz B.
        • Lin M.C.
        • Radke C.J.
        Tear-film evaporation rate from simultaneous ocular-surface temperature and tear-breakup area.
        Optom Vis Sci. 2018; 95: 5-12
        • Li W.
        • Graham A.D.
        • Selvin S.
        • Lin M.C.
        Ocular surface cooling corresponds to tear film thinning and breakup.
        Optom Vis Sci. 2015; 92: e248-e256
        • Efron N.
        • Young G.
        • Brennan N.A.
        Ocular surface temperature.
        Curr Eye Res. 1989; 8: 901-906
        • Belmonte C.
        • Nichols J.J.
        • Cox S.M.
        • Brock J.A.
        • Begley C.G.
        • Bereiter D.A.
        • et al.
        TFOS DEWS II pain and sensation report.
        Ocul Surf. 2017; 15: 404-437
        • Belmonte C.
        • Gallar J.
        Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations.
        Invest Ophthalmol Vis Sci. 2011; 52: 3888-3892
        • Yap M.
        Tear break-up time is related to blink frequency.
        Acta Ophthalmol (Copenh). 1991; 69: 92-94
        • Fujishima H.
        • Toda I.
        • Yamada M.
        • Sato N.
        • Tsubota K.
        Corneal temperature in patients with dry eye evaluated by infrared radiation thermometry.
        Br J Ophthalmol. 1996; 80: 29-32
      1. Mori A, Oguchi Y, Okusawa Y, Ono M, Fujishima H, Tsubota K. Use of high-speed, high-resolution thermography to evaluate the tear film layer. Am J Ophthalmol. 1997;124:729-35.

        • Golding T.R.
        • Bruce A.S.
        • Mainstone J.C.
        Relationship between tear-meniscus parameters and tear-film breakup.
        Cornea. 1997; 16: 649-661
        • Miller K.L.
        • Polse K.A.
        • Radke C.J.
        Black-line formation and the“ perched” human tear film.
        Curr Eye Res. 2002; 25: 155-162
        • Yee R.W.
        • Sperling H.G.
        • Kattek A.
        • Paukert M.T.
        • Dawson K.
        • Garcia M.
        • et al.
        Isolation of the ocular surface to treat dysfunctional tear syndrome associated with computer use.
        Ocul Surf. 2007; 5: 308-315
        • Blehm C.
        • Vishnu S.
        • Khattak A.
        • Mitra S.
        • Yee R.W.
        Computer vision syndrome: a review.
        Surv Ophthalmol. 2005; 50: 253-262
        • Korb D.R.
        • Baron D.F.
        • Herman J.P.
        • Finnemore V.M.
        • Exford J.M.
        • Hermosa J.L.
        • et al.
        Tear film lipid layer thickness as a function of blinking.
        Cornea. 1994; 13: 354-359
        • Wong H.
        • Fatt I.
        • Radke C.J.
        Deposition and thinning of the human tear film.
        J Colloid Interface Sci. 1996; 184: 44-51
        • Aydemir E.
        • Breward C.J.W.
        • Witelski T.P.
        The effect of polar lipids on tear film dynamics.
        Bull Math Biol. 2011; 73: 1171-1201
        • Tan J.-H.
        • Ng E.Y.K.
        • Acharya U.R.
        Evaluation of tear evaporation from ocular surface by functional infrared thermography.
        Med Phys. 2010; 37: 6022-6034
        • Tsubota K.
        • Hata S.
        • Okusawa Y.
        • Egami F.
        • Ohtsuki T.
        • Nakamori K.
        Quantitative videographic analysis of blinking in normal subjects and patients with dry eye.
        Arch Ophthalmol. 1996; 114: 715-720
      2. Moore QL, De Paiva CS, Pflugfelder SC. Effects of dry eye therapies on environmentally induced ocular surface disease. Am J Ophthalmol. 2015;160:135-42. e1.

        • Wang M.T.M.
        • Tien L.
        • Han A.
        • Lee J.M.
        • Kim D.
        • Markoulli M.
        • et al.
        Impact of blinking on ocular surface and tear film parameters.
        Ocul Surf. 2018; 16: 424-429
        • Kaneko K.
        • Sakamoto K.
        Spontaneous blinks as a criterion of visual fatigue during prolonged work on visual display terminals.
        Percept Mot Skills. 2001; 92: 234-250
        • Portello J.K.
        • Rosenfield M.
        • Chu C.A.
        Blink rate, incomplete blinks and computer vision syndrome.
        Optom Vis Sci. 2013; 90: 482-487
        • Benedetto D.A.
        • Clinch T.E.
        • Laibson P.R.
        In vivo observation of tear dynamics using fluorophotometry.
        Arch Ophthalmol. 1984; 102: 410-412
        • Abusharha A.A.
        • Pearce E.I.
        The effect of low humidity on the human tear film.
        Cornea. 2013; 32: 429-434
        • McCulley J.P.
        • Uchiyama E.
        • Aronowicz J.D.
        • Butovich I.A.
        Impact of evaporation on aqueous tear loss.
        Trans Am Ophthalmol Soc. 2006; 104: 121
        • McCulley J.P.
        • Aronowicz J.D.
        • Uchiyama E.
        • Shine W.E.
        • Butovich I.A.
        Correlations in a change in aqueous tear evaporation with a change in relative humidity and the impact.
        Am J Ophthalmol. 2006; 141: 758-760
        • Uchiyama E.
        • Aronowicz J.D.
        • Butovich I.A.
        • McCulley J.P.
        Increased evaporative rates in laboratory testing conditions simulating airplane cabin relative humidity: an important factor for dry eye syndrome.
        Eye Contact Lens. 2007; 33: 174-176
        • Tsubota K.
        Tear dynamics and dry eye.
        Prog Retin Eye Res. 1998; 17: 565-596
        • Madden L.C.
        • Tomlinson A.
        • Simmons P.A.
        Effect of humidity variations in a controlled environment chamber on tear evaporation after dry eye therapy.
        Eye Contact Lens. 2013; 39: 169-174
        • Peng C.-C.
        • Cerretani C.
        • Braun R.J.
        • Radke C.
        Evaporation-driven instability of the precorneal tear film.
        Adv Colloid Interface Sci. 2014; 206: 250-264
        • Korb D.R.
        • Greiner J.V.
        • Glonek T.
        • Esbah R.
        • Finnemore V.M.
        • Whalen A.C.
        Effect of periocular humidity on the tear film lipid layer.
        Cornea. 1996; 15: 129-134
        • Maruyama K.
        • Yokoi N.
        • Takamata A.
        • Kinoshita S.
        Effect of environmental conditions on tear dynamics in soft contact lens wearers.
        Invest Ophthalmol Vis Sci. 2004; 45: 2563-2568
      3. González-García MJ, González-Sáiz A, De la Fuente B, de la Fuente B, Morilla-Grasa A, Mayo-Iscar A, et al. Exposure to a controlled adverse environment impairs the ocular surface of subjects with minimally symptomatic dry eye. Invest Ophthalmol Vis Sci. 2007;48:4026-32.

        • Hinninghofen H.
        • Enck P.
        Passenger well-being in airplanes.
        Auton Neurosci. 2006; 129: 80-85
        • McCarty D.J.
        • McCarty C.A.
        Survey of dry eye symptoms in Australian pilots.
        Clin Exp Ophthalmol. 2000; 28: 169-171
        • Rocher P.
        • Fatt I.
        Hydrogel contact lenses.
        Optom Today. 1995; 35: 18-22
        • Nagda N.L.
        • Koontz M.D.
        Review of studies on flight attendant health and comfort in airliner cabins.
        Aviat Space Environ Med. 2003; 74: 101-109
        • Abusharha A.A.
        • Pearce E.I.
        • Fagehi R.
        Effect of ambient temperature on the human tear film.
        Eye Contact Lens. 2016; 42: 308-312
        • Bron A.J.
        • Tiffany J.M.
        • Gouveia S.M.
        • Yokoi N.
        • Voon L.W.
        Functional aspects of the tear film lipid layer.
        Exp Eye Res. 2004; 78: 347-360
        • Terada O.
        • Chiba K.
        • Senoo T.
        • Obara Y.
        Ocular surface temperature of meibomia gland dysfunction patients and the melting point of meibomian gland secretions.
        Nippon Ganka Gakkai Zasshi. 2004; 108: 690-693
        • Freeman R.
        • Fatt I.
        Environmental influences on ocular temperature.
        Invest Ophthalmol Vis Sci. 1973; 12: 596-602
        • Paschides C.
        • Stefaniotou M.
        • Papageorgiou J.
        • Skourtis P.
        • Psilas K.
        Ocular surface and environmental changes.
        Acta Ophthalmol Scand. 1998; 76: 74-77
        • Zhong J.-Y.
        • Lee Y.-C.
        • Hsieh C.-J.
        • Tseng C.-C.
        • Yiin L.-M.
        Association between dry eye disease, air pollution and weather changes in Taiwan.
        Int J Environ Res Public Health. 2018; 15: 2269
        • van Setten G.
        • Labetoulle M.
        • Baudouin C.
        • Rolando M.
        Evidence of seasonality and effects of psychrometry in dry eye disease.
        Acta Ophthalmol (Copenh). 2016; 94: 499-506
        • Garai J.
        Physical model for vaporization.
        Fluid Phase Equilib. 2009; 283: 89-92
        • Gessert G.
        Measuring a medium’s air space and water holding capacity.
        Ornamentals Northwest. 1976; 1: 11-12
        • Borchman D.
        • Foulks G.N.
        • Yappert M.C.
        • Mathews J.
        • Leake K.
        • Bell J.
        Factors affecting evaporation rates of tear film components measured in vitro.
        Eye Contact Lens. 2009; 35: 32-37
        • Murakami S.
        Analysis and design of micro-climate around the human body with respiration by CFD.
        Indoor Air. 2004; 14: 144-156
        • Wyon N.
        • Wyon D.
        Measurement of acute response to draught in the eye.
        Acta Ophthalmol (Copenh). 1987; 65: 385-392
        • Tomlinson A.
        • H. Cedarstaff T.
        Diurnal variation in human tear evaporation.
        J Br Contact Lens Assoc. 1992; 15: 77-79
        • Wojtowicz J.C.
        • McCulley J.P.
        Assessment and impact of the time of day on aqueous tear evaporation in normal subjects.
        Eye Contact Lens. 2009; 35: 117
        • Sun W.S.
        • Baker R.S.
        • Chuke J.C.
        • Rouholiman B.R.
        • Hasan S.A.
        • Gaza W.
        • et al.
        Age-related changes in human blinks. Passive and active changes in eyelid kinematics.
        Invest Ophthalmol Vis Sci. 1997; 38: 92-99
        • Hykin P.G.
        • Bron A.J.
        Age-related morphological changes in lid margin and meibomian gland anatomy.
        Cornea. 1992; 11: 334-342
        • Pochi P.E.
        • Strauss J.S.
        • Downing D.T.
        Age-related changes in sebaceous gland activity.
        J, Invest Dermatol. 1979; 73: 108-111
        • Driver P.J.
        • Lemp M.A.
        Meibomian gland dysfunction.
        Surv Ophthalmol. 1996; 40: 343-367
        • Sullivan B.D.
        • Evans J.E.
        • Dana M.R.
        • Sullivan D.A.
        Influence of aging on the polar and neutral lipid profiles in human meibomian gland secretions.
        Arch Ophthalmol. 2006; 124: 1286-1292
        • Mathers W.D.
        • Shields W.J.
        • Sachdev M.S.
        • Petroll W.M.
        • Jester J.V.
        Meibomian gland dysfunction in chronic blepharitis.
        Cornea. 1991; 10: 277-285
        • Den S.
        • Shimizu K.
        • Ikeda T.
        • Tsubota K.
        • Shimmura S.
        • Shimazaki J.
        Association between meibomian gland changes and aging, sex, or tear function.
        Cornea. 2006; 25: 651-655
        • Guillon M.
        • Maïssa C.
        Tear film evaporation—effect of age and gender.
        Cont Lens Anterior Eye. 2010; 33: 171-175
        • Craig J.P.
        • Tomlinson A.
        Age and gender effects on the normal tear film.
        in: Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Springer, 1998: 411-415
        • Girardin F.
        • Orgül S.
        • Erb C.
        • Flammer J.
        Relationship between corneal temperature and finger temperature.
        Arch Ophthalmol. 1999; 117: 166-169
        • Nussey S.S.
        • Whitehead S.A.
        Endocrinology: an integrated approach.
        BIOS Scientific Publishers, Oxford2001
        • Truong S.
        • Cole N.
        • Stapleton F.
        • Golebiowski B.
        Sex hormones and the dry eye.
        Clin Exp Optom. 2014; 97: 324-336
        • Sullivan D.A.
        • Sullivan B.D.
        • Ullman M.D.
        • Rocha E.M.
        • Krenzer K.L.
        • Cermak J.M.
        • et al.
        Androgen influence on the meibomian gland.
        Invest Ophthalmol Vis Sci. 2000; 41: 3732-3742
        • Knop E.
        • Knop N.
        • Millar T.
        • Obata H.
        • Sullivan D.A.
        The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland.
        Invest Ophthalmol Vis Sci. 2011; 52: 1938-1978
      4. Sullivan D, Yamagami H, Liu M, Steagall R, Schirra F, Suzuki T, et al. Sex steroids, the meibomian gland and evaporative dry eye. Lacrimal Gland, Tear Film, and Dry Eye Syndromes 3. Springer; 2002:389-99.

        • Okun M.S.
        • McDonald W.M.
        • DeLong M.R.
        Refractory nonmotor symptoms in male patients with Parkinson disease due to testosterone deficiency: a common unrecognized comorbidity.
        Arch Neurol. 2002; 59: 807-811
        • Krenzer K.L.
        • Reza Dana M.
        • Ullman M.D.
        • Cermak J.M.
        • Tolls D.B.
        • Evans J.E.
        • et al.
        Effect of androgen deficiency on the human meibomian gland and ocular surface.
        J Clin Endocr. 2000; 85: 4874-4882
        • Sullivan B.D.
        • Evans J.E.
        • Cermak J.M.
        • Krenzer K.L.
        • Dana M.R.
        • Sullivan D.A.
        Complete androgen insensitivity syndrome: effect on human meibomian gland secretions.
        Arch Ophthalmol. 2002; 120: 1689-1699
        • Labrie F.
        • Bélanger A.
        • Cusan L.
        • Gomez J.-L.
        • Candas B.
        Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging.
        J Clin Endocr. 1997; 82: 2396-2402
        • Labrie F.
        DHEA, important source of sex steroids in men and even more in women.
        Prog Brain Res. 2010; 182: 97-148
        • Sullivan D.A.
        • Jensen R.V.
        • Suzuki T.
        • Richards S.M.
        Do sex steroids exert sex-specific and/or opposite effects on gene expression in lacrimal and meibomian glands?.
        Mol Vis. 2009; 15: 1553
      5. Boga A, Stapleton F, Chapman M, Golebiowski B. Effects of elevated serum oestrogen on dry eye in women undergoing in vitro fertilisation. Invest Ophthalmol Vis Sci. 2022;63:1566–A0291-1566–A0291.

        • Chen S.P.
        • Massaro-Giordano G.
        • Pistilli M.
        • Schreiber C.A.
        • Bunya V.Y.
        Tear osmolarity and dry eye symptoms in women using oral contraception and contact lenses.
        Cornea. 2013; 32: 423
        • Tomlinson A.
        • Pearce E.I.
        • Simmons P.A.
        • Blades K.
        Effect of oral contraceptives on tear physiology.
        Ophthalmic Physiol Opt. 2001; 21: 9-16