Advertisement

The research progress on the molecular mechanism of corneal cross-linking in keratoconus treatment

Published:December 20, 2022DOI:https://doi.org/10.1016/j.clae.2022.101795

      Abstract

      Keratoconus (KC) is a corneal anomaly that is manifested in a limited cone-like bulge with corneal thinning. Many molecules in the cornea change during the development of KC, including various components of the extracellular matrix, cytokines, cell connection, and cell adhesion-related proteins. Several treatment options are available, with corneal cross-linking (CXL) being the treatment of choice for early KC. However, postoperative complications have been reported in some CXL patients, mainly caused by corneal epithelial resection. Despite the fact that some novel approaches have helped to reduce some of the initial post-operative issues, their effectiveness seems to be inferior to that of the original CXL. To keep effectiveness while avoiding these negative effects, it is necessary to study the mechanism of CXL in KC treatment at the molecular level. This article provides a review of the molecular mechanism of CXL in the treatment of KC from four aspects: enzyme activity, signal transduction pathway, corneal-related proteins, and other KC-related molecules, further confirming the feasibility of CXL treatment of KC, providing new ideas for improving CXL.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sherwin T.
        • Brookes N.H.
        Morphological changes in keratoconus: pathology or pathogenesis.
        Clin Exp Ophthalmol. 2004; 32: 211-217https://doi.org/10.1111/j.1442-9071.2004.00805.x
        • Moraes R.L.B.
        • Ghanem R.C.
        • Ghanem V.C.
        • Santhiago M.R.
        Haze and visual acuity loss after sequential photorefractive keratectomy and corneal cross-linking for keratoconus.
        J Refract Surg. 2019; 35: 109-114https://doi.org/10.3928/1081597X-20190114-01
        • Chan E.
        • Chong E.W.
        • Lingham G.
        • Stevenson L.J.
        • Sanfilippo P.G.
        • Hewitt A.W.
        • et al.
        Prevalence of keratoconus based on scheimpflug imaging: The Raine study.
        Ophthalmology. 2021; 128: 515-521
        • Subasinghe S.K.
        • Ogbuehi K.C.
        • Dias G.J.
        Current perspectives on corneal collagen crosslinking (CXL).
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 1363-1384https://doi.org/10.1007/s00417-018-3966-0
        • Santodomingo-Rubido J.
        • Carracedo G.
        • Suzaki A.
        • Villa-Collar C.
        • Vincent S.J.
        • Wolffsohn J.S.
        Keratoconus: An updated review.
        Cont Lens Anterior Eye. 2022; 45101559https://doi.org/10.1016/j.clae.2021.101559
        • Chang S.-H.
        • Mohammadvali A.
        • Chen K.-J.
        • Ji Y.-R.
        • Young T.-H.
        • Wang T.-J.
        • et al.
        The relationship between mechanical properties, ultrastructural changes, and intrafibrillar bond formation in corneal UVA/riboflavin cross-linking treatment for keratoconus.
        J Refract Surg. 2018; 34: 264-272
        • Santhiago M.R.
        • Randleman J.B.
        The biology of corneal cross-linking derived from ultraviolet light and riboflavin.
        Exp Eye Res. 2021; 202108355https://doi.org/10.1016/j.exer.2020.108355
        • Wang M.
        • Berdahl J.
        • McCafferty S.
        Corneal crosslinking biomechanics evaluated by a novel and easily implemented differential tonometry method.
        Curr Eye Res. 2021; 46: 1614-1620https://doi.org/10.1080/02713683.2021.1916039
        • Beshtawi I.M.
        • Akhtar R.
        • Hillarby M.C.
        • O’Donnell C.
        • Zhao X.
        • Brahma A.
        • et al.
        Biomechanical changes of collagen cross-linking on human keratoconic corneas using scanning acoustic microscopy.
        Curr Eye Res. 2016; : 1-7
        • Wollensak G.
        • Iomdina E.
        • Dittert D.D.
        • Herbst H.
        Wound healing in the rabbit cornea after corneal collagen cross-linking with riboflavin and UVA.
        Cornea. 2007; 26: 600-605https://doi.org/10.1097/ICO.0b013e318041f073
        • Mazzotta C.
        • Traversi C.
        • Baiocchi S.
        • Bagaglia S.
        • Caporossi O.
        • Villano A.
        • et al.
        Corneal collagen cross-linking with riboflavin and ultraviolet A light for pediatric keratoconus: ten-year results.
        Cornea. 2018; 37: 560-566https://doi.org/10.1097/ICO.0000000000001505
        • Paik D.C.
        • Trokel S.L.
        • Suh L.H.
        Just what do we know about corneal collagen turnover?.
        Cornea. 2018; 37: e49-e50
        • Schumacher S.
        • Mrochen M.
        • Spoerl E.
        Absorption of UV-light by riboflavin solutions with different concentration.
        J Refract Surg. 2012; 28: 91-92https://doi.org/10.3928/1081597X-20120117-01
        • Perez-Santonja J.J.
        • Artola A.
        • Javaloy J.
        • Alio J.L.
        • Abad J.L.
        Microbial keratitis after corneal collagen crosslinking.
        J Cataract Refract Surg. 2009; 35: 1138-1140https://doi.org/10.1016/j.jcrs.2009.01.036
        • Kymionis G.D.
        • Kontadakis G.A.
        • Hashemi K.K.
        Accelerated versus conventional corneal crosslinking for refractive instability: an update.
        Curr Opin Ophthalmol. 2017; 28: 343-347https://doi.org/10.1097/ICU.0000000000000375
        • Filippello M.
        • Stagni E.
        • O'Brart D.
        Transepithelial corneal collagen crosslinking: bilateral study.
        J Cataract Refract Surg. 2012; 38: 283-291https://doi.org/10.1016/j.jcrs.2011.08.030
        • Loukovitis E.
        • Kozeis N.
        • Gatzioufas Z.
        • Kozei A.
        • Tsotridou E.
        • Stoila M.
        • et al.
        The proteins of keratoconus: a literature review exploring their contribution to the pathophysiology of the disease.
        Adv Ther. 2019; 36: 2205-2222
        • Wilson S.E.
        Role of apoptosis in wound healing in the cornea.
        Cornea. 2000; 19: S7-Shttps://doi.org/10.1097/00003226-200005001-00003
        • Szczotka-Flynn L.
        • Slaughter M.
        • McMahon T.
        • Barr J.
        • Edrington T.
        • Fink B.
        • et al.
        Disease severity and family history in keratoconus.
        Br J Ophthalmol. 2008; 92: 1108-1111
        • Maurice D.M.
        The structure and transparency of the cornea.
        J Physiol. 1957; 136: 263-286https://doi.org/10.1113/jphysiol.1957.sp005758
        • Zhou L.
        • Sawaguchi S.
        • Twining S.S.
        • Sugar J.
        • Feder R.S.
        • Yue B.Y.
        Expression of degradative enzymes and protease inhibitors in corneas with keratoconus.
        Invest Ophthalmol Vis Sci. 1998; 39: 1117-1124
        • Lema I.
        • Sobrino T.
        • Duran J.A.
        • Brea D.
        • Diez-Feijoo E.
        Subclinical keratoconus and inflammatory molecules from tears.
        Br J Ophthalmol. 2009; 93: 820-824https://doi.org/10.1136/bjo.2008.144253
        • Balasubramanian S.A.
        • Mohan S.
        • Pye D.C.
        • Willcox M.D.
        Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus.
        Acta Ophthalmol. 2012; 90: e303-e309https://doi.org/10.1111/j.1755-3768.2011.02369.x
        • Foster J.W.
        • Shinde V.
        • Soiberman U.S.
        • Sathe G.
        • Liu S.
        • Wan J.
        • et al.
        Integrated stress response and decreased ECM in cultured stromal cells from keratoconus corneas.
        Invest Ophthalmol Vis Sci. 2018; 59: 2977
        • Shetty R.
        • Sathyanarayanamoorthy A.
        • Ramachandra R.A.
        • Arora V.
        • Ghosh A.
        • Srivatsa P.R.
        • et al.
        Attenuation of lysyl oxidase and collagen gene expression in keratoconus patient corneal epithelium corresponds to disease severity.
        Mol Vis. 2015; 21: 12-25
        • Bykhovskaya Y.
        • Li X.
        • Epifantseva I.
        • Haritunians T.
        • Siscovick D.
        • Aldave A.
        • et al.
        Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies.
        Invest Ophthalmol Vis Sci. 2012; 53: 4152
        • Mok J.W.
        • So H.R.
        • Ha M.J.
        • Na K.S.
        • Joo C.K.
        Association with corneal remodeling related genes, ALDH3A1, LOX, and SPARC genes variations in Korean keratoconus patients.
        Korean J Ophthalmol. 2021; 35: 120-129https://doi.org/10.3341/kjo.2020.0138
        • Sharif R.
        • Hjortdal J.
        • Sejersen H.
        • Frank G.
        • Karamichos D.
        Human in vitro model reveals the effects of collagen cross-linking on keratoconus pathogenesis.
        Sci Rep. 2017; 7: 12517https://doi.org/10.1038/s41598-017-12598-8
        • Guo X.
        • Hutcheon A.E.
        • Melotti S.A.
        • Zieske J.D.
        • Trinkaus-Randall V.
        • Ruberti J.W.
        Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts.
        Invest Ophthalmol Vis Sci. 2007; 48: 4050-4060https://doi.org/10.1167/iovs.06-1216
        • Anazco C.
        • Cerro S.
        • Pereira N.
        • Rojas C.
        • Torres A.
        • Vidal-Beltran I.
        Dysregulation of lysyl oxidases expression in diabetic nephropathy and renal cell carcinoma.
        Curr Drug Targets. 2021; 22: 1916-1925https://doi.org/10.2174/1389450122666210712163702
        • Shetty R.
        • Rajiv Kumar N.
        • Pahuja N.
        • Deshmukh R.
        • Vunnava K.
        • Abilash V.G.
        • et al.
        Outcomes of corneal cross-linking correlate with cone-specific lysyl oxidase expression in patients with keratoconus.
        Cornea. 2018; 37: 369-374
        • Steinberg J.
        • Ahmadiyar M.
        • Rost A.
        • Frings A.
        • Filev F.
        • Katz T.
        • et al.
        Anterior and posterior corneal changes after crosslinking for keratoconus.
        Optom Vis Sci. 2014; 91: 178-186https://doi.org/10.1097/OPX.0000000000000141
        • di Martino E.
        • Ali M.
        • Inglehearn C.F.
        Matrix metalloproteinases in keratoconus - Too much of a good thing?.
        Exp Eye Res. 2019; 182: 137-143https://doi.org/10.1016/j.exer.2019.03.016
        • Nishtala K.
        • Pahuja N.
        • Shetty R.
        • Nuijts R.M.
        • Ghosh A.
        Tear biomarkers for keratoconus.
        Eye Vis (Lond). 2016; 3: 19https://doi.org/10.1186/s40662-016-0051-9
        • Mutlu M.
        • Sarac O.
        • Cagil N.
        • Avcioglu G.
        Relationship between tear eotaxin-2 and MMP-9 with ocular allergy and corneal topography in keratoconus patients.
        Int Ophthalmol. 2020; 40: 51-57https://doi.org/10.1007/s10792-019-01149-x
        • Sharif R.
        • Fowler B.
        • Karamichos D.
        • Mohan R.R.
        Collagen cross-linking impact on keratoconus extracellular matrix.
        PLoS One. 2018; 13: e0200704
        • Wisse R.P.
        • Kuiper J.J.
        • Gans R.
        • Imhof S.
        • Radstake T.R.
        • Van der Lelij A.
        Cytokine expression in keratoconus and its corneal microenvironment: A systematic review.
        Ocul Surf. 2015; 13: 272-283https://doi.org/10.1016/j.jtos.2015.04.006
        • Yari D.
        • Ehsanbakhsh Z.
        • Validad M.H.
        • Langroudi F.H.
        Association of TIMP-1 and COL4A4 gene polymorphisms with keratoconus in an Iranian population.
        J Ophthalmic Vis Res. 2020; 15: 299-307https://doi.org/10.18502/jovr.v15i3.7448
        • Khaled M.L.
        • Helwa I.
        • Drewry M.
        • Seremwe M.
        • Estes A.
        • Liu Y.
        Molecular and histopathological changes associated with keratoconus.
        Biomed Res Int. 2017; 2017: 7803029https://doi.org/10.1155/2017/7803029
        • Ionescu C.
        • Corbu C.G.
        • Tanase C.
        • Jonescu-Cuypers C.
        • Nicula C.
        • Dascalescu D.
        • et al.
        Inflammatory biomarkers profile as microenvironmental expression in keratoconus.
        Dis Markers. 2016; 2016: 1-8
        • Jia H.Z.
        • Pang X.
        • Peng X.J.
        Changes of matrix metalloproteinases in the stroma after corneal cross-linking in rabbits.
        Int J Ophthalmol. 2021; 14: 26-31https://doi.org/10.18240/ijo.2021.01.04
        • Zhang H.
        • Cao X.
        • Liu Y.
        • Wang P.
        • Li X.
        • Miura G.
        Tear levels of inflammatory cytokines in keratoconus: a meta-analysis of case-control and cross-sectional studies.
        Biomed Res Int. 2021; 2021: 6628923https://doi.org/10.1155/2021/6628923
        • Balmus I.-M.
        • Alexa A.I.
        • Ciuntu R.-E.
        • Danielescu C.
        • Stoica B.
        • Cojocaru S.I.
        • et al.
        Oxidative stress markers dynamics in keratoconus patients' tears before and after corneal collagen crosslinking procedure.
        Exp Eye Res. 2020; 190: 107897https://doi.org/10.1016/j.exer.2019.107897
        • Kowalska J.
        • Banach K.
        • Rok J.
        • Beberok A.
        • Rzepka Z.
        • Wrzesniok D.
        Molecular and biochemical basis of fluoroquinolones-induced phototoxicity-the study of antioxidant system in human melanocytes exposed to UV-A radiation.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21249714
        • Jiang Y.
        • Zhang J.
        • Zhang C.
        • Hong L.
        • Jiang Y.
        • Lu L.
        • et al.
        The role of cystatin C as a proteasome inhibitor in multiple myeloma.
        Hematology. 2020; 25: 457-463https://doi.org/10.1080/16078454.2020.1850973
        • Recalde J.I.
        • Duran J.A.
        • Rodriguez-Agirretxe I.
        • Soria J.
        • Sanchez-Tena M.A.
        • Pereiro X.
        • et al.
        Changes in tear biomarker levels in keratoconus after corneal collagen crosslinking.
        Mol Vis. 2019; 25: 12-21
        • García B.
        • García-Suárez O.
        • Merayo-Lloves J.
        • Ferrara G.
        • Alcalde I.
        • González J.
        • et al.
        Heparanase overexpresses in keratoconic cornea and tears depending on the pathologic grade.
        Dis Markers. 2017; 20173502386https://doi.org/10.1155/2017/3502386
        • Karasneh G.A.
        • Kapoor D.
        • Bellamkonda N.
        • Patil C.D.
        • Protease S.D.
        Growth factor, and heparanase-mediated syndecan-1 shedding leads to enhanced HSV-1 egress.
        Viruses. 2021; 13https://doi.org/10.3390/v13091748
        • Wilson S.E.
        Corneal wound healing.
        Exp Eye Res. 2020; 197108089https://doi.org/10.1016/j.exer.2020.108089
        • Monteiro de Barros M.R.
        • Chakravarti S.
        Pathogenesis of keratoconus: NRF2-antioxidant, extracellular matrix and cellular dysfunctions.
        Exp Eye Res. 2022; 219109062https://doi.org/10.1016/j.exer.2022.109062
        • Mokoena D.
        • Dhilip Kumar S.S.
        • Houreld N.N.
        • Abrahamse H.
        Role of photobiomodulation on the activation of the Smad pathway via TGF-beta in wound healing.
        J Photochem Photobiol B. 2018; 189: 138-144https://doi.org/10.1016/j.jphotobiol.2018.10.011
        • Tzavlaki K.
        • Moustakas A.
        TGF-beta signaling.
        Biomolecules. 2020; 10: 3https://doi.org/10.3390/biom10030487
        • Karamichos D.
        • Hutcheon A.E.
        • Zieske J.D.
        Transforming growth factor-beta3 regulates assembly of a non-fibrotic matrix in a 3D corneal model.
        J Tissue Eng Regen Med. 2011; 5: e228-e238https://doi.org/10.1002/term.429
        • Sriram S.
        • Tran J.A.
        • Guo X.
        • Hutcheon A.E.K.
        • Kazlauskas A.
        • Zieske J.D.
        Development of wound healing models to study TGFbeta3's effect on SMA.
        Exp Eye Res. 2017; 161: 52-60https://doi.org/10.1016/j.exer.2017.06.005
        • Murayama K.
        • Kato-Murayama M.
        • Itoh Y.
        • Miyazono K.
        • Miyazawa K.
        • Shirouzu M.
        Structural basis for inhibitory effects of Smad7 on TGF-beta family signaling.
        J Struct Biol. 2020; 212107661https://doi.org/10.1016/j.jsb.2020.107661
        • Bai S.
        • Cao X.
        A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-beta signaling.
        J Biol Chem. 2002; 277: 4176-4182https://doi.org/10.1074/jbc.M105105200
        • Nakatsu M.N.
        • Ding Z.
        • Ng M.Y.
        • Truong T.T.
        • Yu F.
        • Deng S.X.
        Wnt/beta-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells.
        Invest Ophthalmol Vis Sci. 2011; 52: 4734-4741https://doi.org/10.1167/iovs.10-6486
        • Attisano L.
        • Wrana J.L.
        Signal integration in TGF-beta, WNT, and Hippo pathways.
        F1000Prime Rep. 2013; 5: 17https://doi.org/10.12703/P5-17
        • Xiu M.X.
        • Liu Y.M.
        • Kuang B.H.
        The oncogenic role of Jagged1/Notch signaling in cancer.
        Biomed Pharmacother. 2020; 129110416https://doi.org/10.1016/j.biopha.2020.110416
        • Luo K.
        Signaling cross talk between TGF-beta/smad and other signaling pathways.
        Cold Spring Harb Perspect Biol. 2017; 9https://doi.org/10.1101/cshperspect.a022137
        • You J.
        • Corley S.M.
        • Wen L.i.
        • Hodge C.
        • Höllhumer R.
        • Madigan M.C.
        • et al.
        RNA-Seq analysis and comparison of corneal epithelium in keratoconus and myopia patients.
        Sci Rep. 2018; 8https://doi.org/10.1038/s41598-017-18480-x
        • Kabza M.
        • Karolak J.A.
        • Rydzanicz M.
        • Szczesniak M.W.
        • Nowak D.M.
        • Ginter-Matuszewska B.
        • et al.
        Collagen synthesis disruption and downregulation of core elements of TGF-beta, Hippo, and Wnt pathways in keratoconus corneas.
        Eur J Hum Genet. 2017; 25: 582-590https://doi.org/10.1038/ejhg.2017.4
        • Hassell J.R.
        • Birk D.E.
        The molecular basis of corneal transparency.
        Exp Eye Res. 2010; 91: 326-335https://doi.org/10.1016/j.exer.2010.06.021
        • Sun M.
        • Chen S.
        • Adams S.M.
        • Florer J.B.
        • Liu H.
        • Kao W.-Y.
        • et al.
        Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model.
        J Cell Sci. 2011; 124: 4096-4105https://doi.org/10.1242/jcs.091363
        • García B.
        • García-Suárez O.
        • Merayo-Lloves J.
        • Alcalde I.
        • Alfonso J.F.
        • Cueto L.-V.
        • et al.
        Differential expression of proteoglycans by corneal stromal cells in keratoconus.
        Invest Ophthalmol Vis Sci. 2016; 57: 2618
        • McKay T.B.
        • Priyadarsini S.
        • Karamichos D.
        Mechanisms of collagen crosslinking in diabetes and keratoconus.
        Cells. 2019; 8https://doi.org/10.3390/cells8101239
        • Brummer G.
        • Littlechild S.
        • McCall S.
        • Zhang Y.
        • Conrad G.W.
        The role of nonenzymatic glycation and carbonyls in collagen cross-linking for the treatment of keratoconus.
        Invest Ophthalmol Vis Sci. 2011; 52: 6363-6369https://doi.org/10.1167/iovs.11-7585
        • Ionescu I.C.
        • Corbu C.G.
        • Tanase C.
        • Ionita G.
        • Nicula C.
        • Coviltir V.
        • et al.
        Overexpression of tear inflammatory cytokines as additional finding in keratoconus patients and their first degree family members.
        Mediators Inflamm. 2018; 2018: 4285268https://doi.org/10.1155/2018/4285268
        • Rossi S.
        • Orrico A.
        • Santamaria C.
        • Romano V.
        • De Rosa L.
        • Simonelli F.
        • et al.
        Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking.
        Clin Ophthalmol. 2015; 9: 503-509https://doi.org/10.2147/OPTH.S73991
        • Song X.
        • Stachon T.
        • Wang J.
        • Langenbucher A.
        • Seitz B.
        • Szentmáry N.
        Viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus keratocytes after cross-linking.
        Biomed Res Int. 2015; 2015: 1-11https://doi.org/10.1155/2015/254237
        • Wang Y.N.
        • Liu X.N.
        • Wang X.D.
        • Yin Y.
        • Chen Y.
        • Xiao X.H.
        • et al.
        Expression of visual system homeobox 1 in human keratoconus.
        Int J Ophthalmol. 2019; 12: 201-206https://doi.org/10.18240/ijo.2019.02.03
        • Page-McCaw A.
        • Ewald A.J.
        • Werb Z.
        Matrix metalloproteinases and the regulation of tissue remodelling.
        Nat Rev Mol Cell Biol. 2007; 8: 221-233https://doi.org/10.1038/nrm2125
        • Galvis V.
        • Sherwin T.
        • Tello A.
        • Merayo J.
        • Barrera R.
        • Acera A.
        Keratoconus: an inflammatory disorder?.
        Eye (Lond). 2015; 29: 843-859https://doi.org/10.1038/eye.2015.63