Advertisement

Computational analysis of retinal image quality with different contact lens designs in keratoconus

  • Preetirupa Devi
    Affiliations
    Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India

    Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India
    Search for articles by this author
  • Preetam Kumar
    Affiliations
    Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India

    Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India

    Bausch & Lomb Contact Lens Centre, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India
    Search for articles by this author
  • Shrikant R. Bharadwaj
    Correspondence
    Corresponding author at: Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India.
    Affiliations
    Brien Holden Institute of Optometry and Vision Sciences, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India

    Prof Brien Holden Eye Research Centre, L V Prasad Eye Institute, Road no. 2, Banjara Hills, Hyderabad 500034, Telangana, India
    Search for articles by this author
Published:December 10, 2022DOI:https://doi.org/10.1016/j.clae.2022.101794

      Abstract

      Purpose

      To determine 1) the relative differences in optical quality of keratoconic eyes fitted with four routinely used CL designs and 2) the Zernike coefficients in the residual wavefront aberration map that may be responsible for differences in the optical quality of keratoconic eyes fitted with these CLs.

      Methods

      Wavefront aberrations over a 3-mm pupil diameter were measured without and with Kerasoft IC®, Rose K2®, conventional spherical Rigid Gas Permeable (RGP), and Scleral CLs in 15 mild to moderate keratoconic eyes (20 – 28 years) and under unaided viewing in 10 age-similar non-contact lens wearing controls. The resultant through-focus curves constructed for the logarithm of Neural Sharpness (logNS) Image Quality (IQ) metric were quantified in terms of peak value, best focus, and depth of focus. Sensitivity analyses determined the impact of the residual Zernike coefficients of keratoconic eyes fitted with CLs on the IQ of controls at emmetropic refraction.

      Results

      The peak IQ and depth of focus were similar with Rose K2®, conventional RGP, and Scleral CLs (p > 0.05, for all) but significantly better than Kerasoft IC® CLs (p < 0.01 for all). Best focus was similar across all four CLs (p > 0.2 for all). However, the IQ parameters of all the lenses remained significantly poorer than the controls (p < 0.01, for all). The IQ of the controls dropped to keratoconic levels with induced residual lower-order Zernike terms and 3rd-order coma across all lenses in the sensitivity analysis (p < 0.001).

      Conclusions

      IQ of keratoconic eyes remain suboptimal with routinely dispensed CL designs, largely due to residual lower-order aberrations and coma, all relative to the controls. The performance drop appears greater for the Kerasoft IC® CL relative to the other CL designs. These results may provide the optical basis for psychophysical spatial visual performance reported earlier across these four CL designs for keratoconus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marsack J.D.
        • Rozema J.J.
        • Koppen C.
        • Tassignon M.J.
        • Applegate R.A.
        Template-based correction of high-order aberration in keratoconus.
        Optom Vis Sci. 2013; 90: 324-334https://doi.org/10.1097/OPX.0b013e318288c2b1
        • Marsack J.D.
        • Parker K.E.
        • Pesudovs K.
        • Donnelly 3rd, W.J.
        • Applegate R.A.
        Uncorrected wavefront error and visual performance during RGP wear in keratoconus.
        Optom Vis Sci. 2007; 84: 463-470https://doi.org/10.1097/OPX.0b013e31802e64f0
        • Alio J.L.
        • Shabayek M.H.
        Corneal higher order aberrations: a method to grade keratoconus.
        J Refract Surg. 2006; 22: 539-545https://doi.org/10.3928/1081-597X-20060601-05
        • Yekta A.
        • Hashemi H.
        • Ostadimoghaddam H.
        • Hadizadeh M.
        • Rafati S.
        • Doostdar A.
        • et al.
        Anterior and posterior corneal higher-order aberrations in early diagnosis and grading of keratoconus.
        Clin Exp Optom. 2022; : 1-8https://doi.org/10.1080/08164622.2022.2033602
        • Kosaki R.
        • Maeda N.
        • Bessho K.
        • Hori Y.
        • Nishida K.
        • Suzaki A.
        • et al.
        Magnitude and orientation of Zernike terms in patients with keratoconus.
        Invest Ophthalmol Vis Sci. 2007; 48: 3062-3068https://doi.org/10.1167/iovs.06-1285
        • Jinabhai A.
        • Radhakrishnan H.
        • O'Donnell C.
        Higher order aberrations in keratoconus: A review.
        Optometry Pract. 2009; 10: 141-160
        • Ravikumar A.
        • Marsack J.D.
        • Bedell H.E.
        • Shi Y.
        • Applegate R.A.
        Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors.
        J Vis. 2013; 13: 28https://doi.org/10.1167/13.13.28
        • Davis L.J.
        • Schechtman K.B.
        • Begley C.G.
        • Shin J.A.
        • Zadnik K.
        Repeatability of refraction and corrected visual acuity in keratoconus. The CLEK Study Group. Collaborative Longitudinal Evaluation of Keratoconus.
        Optom Vis Sci. 1998; 75: 887-896https://doi.org/10.1097/00006324-199812000-00011
        • Raasch T.W.
        • Schechtman K.B.
        • Davis L.J.
        • Zadnik K.
        • Study CSGCLEoK
        Repeatability of subjective refraction in myopic and keratoconic subjects: results of vector analysis.
        Ophthalmic Physiol Opt. 2001; 21: 376-383https://doi.org/10.1046/j.1475-1313.2001.00596.x
        • Jinabhai A.
        • O'Donnell C.
        • Radhakrishnan H.
        A comparison between subjective refraction and aberrometry-derived refraction in keratoconus patients and control subjects.
        Curr Eye Res. 2010; 35: 703-714https://doi.org/10.3109/02713681003797921
        • Kumar P.
        • Bandela P.K.
        • Bharadwaj S.R.
        Do visual performance and optical quality vary across different contact lens correction modalities in keratoconus?.
        Cont Lens Anterior Eye. 2020; 43: 568-576https://doi.org/10.1016/j.clae.2020.03.009
        • Nilagiri V.K.
        • Metlapally S.
        • Kalaiselvan P.
        • Schor C.M.
        • Bharadwaj S.R.
        LogMAR and Stereoacuity in Keratoconus Corrected with Spectacles and Rigid Gas-permeable Contact Lenses.
        Optom Vis Sci. 2018; 95: 391-398https://doi.org/10.1097/OPX.0000000000001205
        • Rathi V.M.
        • Mandathara P.S.
        • Dumpati S.
        Contact lens in keratoconus.
        Indian J Ophthalmol. 2013; 61: 410-415https://doi.org/10.4103/0301-4738.116066
        • Lim L.
        • Lim E.W.L.
        Current perspectives in the management of keratoconus with contact lenses.
        Eye (Lond). 2020; 34: 2175-2196https://doi.org/10.1038/s41433-020-1065-z
        • Marta A.
        • Marques J.H.
        • Almeida D.
        • Jose D.
        • Barbosa I.
        Keratoconus and Visual Performance with Different Contact Lenses.
        Clin Ophthalmol. 2021; 15: 4697-4705https://doi.org/10.2147/OPTH.S345154
        • Jinabhai A.
        • Radhakrishnan H.
        • Tromans C.
        • O'Donnell C.
        Visual performance and optical quality with soft lenses in keratoconus patients.
        Ophthalmic Physiol Opt. 2012; 32: 100-116https://doi.org/10.1111/j.1475-1313.2011.00889.x
        • Marcos S.
        Aberrometry: basic science and clinical applications.
        Bull Soc Belge Ophtalmol. 2006; 302: 197-213
        • Nilagiri V.K.
        • Metlapally S.
        • Schor C.M.
        • Bharadwaj S.R.
        A computational analysis of retinal image quality in eyes with keratoconus.
        Sci Rep. 2020; 10: 1321https://doi.org/10.1038/s41598-020-57993-w
        • Sarkar S.
        • Devi P.
        • Vaddavalli P.K.
        • Reddy J.C.
        • Bharadwaj S.R.
        Differences in Image Quality after Three Laser Keratorefractive Procedures for Myopia.
        Optom Vis Sci. 2022; 99: 137-149https://doi.org/10.1097/OPX.0000000000001850
        • Sarkar S.
        • Vaddavalli P.K.
        • Bharadwaj S.R.
        Image Quality Analysis of Eyes Undergoing LASER Refractive Surgery.
        PLoS One. 2016; 11: e0148085
        • Yi F.
        • Iskander D.R.
        • Collins M.
        Depth of focus and visual acuity with primary and secondary spherical aberration.
        Vision Res. 2011; 51: 1648-1658https://doi.org/10.1016/j.visres.2011.05.006
        • Yi F.
        • Iskander D.R.
        • Collins M.J.
        Estimation of the depth of focus from wavefront measurements.
        J Vis. 2010; 10(4):3: 1-9https://doi.org/10.1167/10.4.3
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        The temporal dynamics of miniscleral contact lenses: Central corneal clearance and centration.
        Cont Lens Anterior Eye. 2018; 41: 162-168https://doi.org/10.1016/j.clae.2017.07.002
        • Dhaese S.E.
        • Kreps E.O.
        • Consejo A.
        Scleral shape and its correlation with corneal parameters in keratoconus.
        Cont Lens Anterior Eye. 2021; 44101366https://doi.org/10.1016/j.clae.2020.08.010
      1. ROSE K | Menicon Co., Ltd.; Undated. Available from: https://www.menicon.com/product/contact-lenses/view/rose-k/.

        • Kumar P.
        • Mohamed A.
        • Bhombal F.
        • Dumpati S.
        • Vaddavalli P.K.
        Prosthetic replacement of the ocular surface ecosystem for corneal irregularity: Visual improvement and optical device characteristics.
        Cont Lens Anterior Eye. 2019; 42: 526-532https://doi.org/10.1016/j.clae.2019.05.001
        • Su S.
        • Johns L.
        • Rah M.J.
        • Ryan R.
        • Barr J.
        Clinical performance of KeraSoft((R)) IC in irregular corneas.
        Clin Ophthalmol. 2015; 9: 1953-1964https://doi.org/10.2147/OPTH.S87176
        • Edrington T.B.
        • Barr J.T.
        • Zadnik K.
        • Davis L.J.
        • Gundel R.E.
        • Libassi D.P.
        • et al.
        Standardized rigid contact lens fitting protocol for keratoconus.
        Optom Vis Sci. 1996; 73: 369-375https://doi.org/10.1097/00006324-199606000-00003
        • Fernandez-Velazquez F.J.
        Kerasoft IC compared to Rose-K in the management of corneal ectasias.
        Cont Lens Anterior Eye. 2012; 35: 175-179https://doi.org/10.1016/j.clae.2012.02.005
        • Jinabhai A.
        • O'Donnell C.
        • Radhakrishnan H.
        Changes in refraction, ocular aberrations, and corneal structure after suspending rigid gas-permeable contact lens wear in keratoconus.
        Cornea. 2012; 31: 500-508https://doi.org/10.1097/ICO.0b013e31820f777b
        • Visser N.
        • Berendschot T.T.
        • Verbakel F.
        • Tan A.N.
        • de Brabander J.
        • Nuijts R.M.
        Evaluation of the comparability and repeatability of four wavefront aberrometers.
        Invest Ophthalmol Vis Sci. 2011; 52: 1302-1311https://doi.org/10.1167/iovs.10-5841
        • Campbell C.E.
        Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed.
        J Opt Soc Am A Opt Image Sci Vis. 2003; 20: 209-217https://doi.org/10.1364/josaa.20.000209
        • Charman W.N.
        Wavefront aberration of the eye: a review.
        Optom Vis Sci. 1991; 68: 574-583https://doi.org/10.1097/00006324-199108000-00002
        • Jinabhai A.
        • Radhakrishnan H.
        • O'Donnell C.
        Repeatability of ocular aberration measurements in patients with keratoconus.
        Ophthalmic Physiol Opt. 2011; 31: 588-594https://doi.org/10.1111/j.1475-1313.2011.00868.x
        • Westheimer G.
        Directional sensitivity of the retina: 75 years of Stiles-Crawford effect.
        Proc Biol Sci. 2008; 275: 2777-2786https://doi.org/10.1098/rspb.2008.0712
        • Ravikumar A.
        • Sarver E.J.
        • Applegate R.A.
        Change in visual acuity is highly correlated with change in six image quality metrics independent of wavefront error and/or pupil diameter.
        J Vis. 2012; 12: 11https://doi.org/10.1167/12.10.11
        • Thibos L.N.
        • Hong X.
        • Bradley A.
        • Applegate R.A.
        Accuracy and precision of objective refraction from wavefront aberrations.
        J Vis. 2004; 4: 329-351https://doi.org/10.1167/4.4.9
        • Schoneveld P.
        • Pesudovs K.
        • Coster D.J.
        Predicting visual performance from optical quality metrics in keratoconus.
        Clin Exp Optom. 2009; 92: 289-296https://doi.org/10.1111/j.1444-0938.2009.00372.x
        • Krumeich J.H.
        • Daniel J.
        • Knülle A.
        Live-epikeratophakia for keratoconus.
        J Cataract Refract Surg. 1998; 24
        • Metlapally S.
        • Bharadwaj S.R.
        • Roorda A.
        • Nilagiri V.K.
        • Yu T.T.
        • Schor C.M.
        Binocular cross-correlation analyses of the effects of high-order aberrations on the stereoacuity of eyes with keratoconus.
        J Vis. 2019; 19: 12https://doi.org/10.1167/19.6.12
        • Fernández E.J.
        • Schwarz C.
        • Prieto P.M.
        • Manzanera S.
        • Artal P.
        Impact on stereo-acuity of two presbyopia correction approaches: monovision and small aperture inlay.
        Biomed Opt Express. 2013; 4: 822-830https://doi.org/10.1364/BOE.4.000822
        • Qian J.
        • Adeseye S.A.
        • Stevenson S.B.
        • Patel S.S.
        • Bedell H.E.
        Dmax for Stereoscopic Depth Perception with Simulated Monovision Correction.
        Seeing Perceiving. 2012; 25: 399-408
        • Devi P.
        • Kumar P.
        • Marella B.L.
        • Bharadwaj S.R.
        Impact of Degraded Optics on Monocular and Binocular Vision: Lessons from Recent Advances in Highly-Aberrated Eyes.
        Semin Ophthalmol. 2022; : 1-18https://doi.org/10.1080/08820538.2022.2094711
        • Tomidokoro A.
        • Oshika T.
        • Amano S.
        • Higaki S.
        • Maeda N.
        • Miyata K.
        Changes in anterior and posterior corneal curvatures in keratoconus.
        Ophthalmology. 2000; 107: 1328-1332https://doi.org/10.1016/s0161-6420(00)00159-7
        • Chen M.
        • Yoon G.
        Posterior corneal aberrations and their compensation effects on anterior corneal aberrations in keratoconic eyes.
        Invest Ophthalmol Vis Sci. 2008; 49: 5645-5652https://doi.org/10.1167/iovs.08-1874
        • Applegate R.A.
        • Marsack J.D.
        • Ramos R.
        • Sarver E.J.
        Interaction between aberrations to improve or reduce visual performance.
        Journal of Cataract and Refractive Surgery. 2003; 29: 1487-1495https://doi.org/10.1016/s0886-3350(03)00334-1
        • Applegate R.A.
        • Sarver E.J.
        • Khemsara V.
        Are all aberrations equal?.
        J Refract Surg. 2002; 18: S556-S562https://doi.org/10.3928/1081-597X-20020901-12
        • Marsack J.D.
        • Parker K.E.
        • Niu Y.
        • Pesudovs K.
        • Applegate R.A.
        On-eye performance of custom wavefront-guided soft contact lenses in a habitual soft lens-wearing keratoconic patient.
        J Refract Surg. 2007; 23: 960-964https://doi.org/10.3928/1081-597X-20071101-18
        • Marsack J.D.
        • Ravikumar A.
        • Nguyen C.
        • Ticak A.
        • Koenig D.E.
        • Elswick J.D.
        • et al.
        Wavefront-guided scleral lens correction in keratoconus.
        Optom Vis Sci. 2014; 91: 1221-1230https://doi.org/10.1097/OPX.0000000000000275
        • Thibos L.
        • Cheng X.
        • Bradley A.
        Design Principles and Limitations of Wave-Front Guided Contact Lenses.
        Eye & Contact Lens: Sci Clin Pract. 2003; 29: S167-S170
        • Bonaque-Gonzalez S.
        • Rios-Rodriguez S.
        • Lopez-Gil N.
        Improving vision by pupil masking.
        Biomed Opt Express. 2016; 7: 2538-2550https://doi.org/10.1364/BOE.7.002538
        • Jinabhai A.N.
        Customised aberration-controlling corrections for keratoconic patients using contact lenses.
        Clin Exp Optom. 2020; 103: 31-43https://doi.org/10.1111/cxo.12937
        • Katsoulos C.
        • Karageorgiadis L.
        • Vasileiou N.
        • Mousafeiropoulos T.
        • Asimellis G.
        Customized hydrogel contact lenses for keratoconus incorporating correction for vertical coma aberration.
        Ophthalmic Physiol Opt. 2009; 29: 321-329https://doi.org/10.1111/j.1475-1313.2009.00645.x
        • Suzaki A.
        • Maeda N.
        • Fuchihata M.
        • Koh S.
        • Nishida K.
        • Fujikado T.
        Visual Performance and Optical Quality of Standardized Asymmetric Soft Contact Lenses in Patients With Keratoconus.
        Invest Ophthalmol Vis Sci. 2017; 58: 2899-2905https://doi.org/10.1167/iovs.16-21296
        • Atchison D.A.
        Aberrations associated with rigid contact lenses.
        JOSA A. 1995; 12: 2267-2273https://doi.org/10.1364/JOSAA.12.002267
        • Rijal S.
        • Hastings G.D.
        • Nguyen L.C.
        • Kauffman M.J.
        • Applegate R.A.
        • Marsack J.D.
        The Impact of misaligned wavefront-guided correction in a scleral lens for the highly aberrated eye.
        Optometry and vision science: official publication of the American Academy of Optometry. 2020; 97: 732https://doi.org/10.1097/OPX.0000000000001577
        • Kowalski L.P.
        • Collins M.J.
        • Vincent S.J.
        Scleral lens centration: The influence of centre thickness, scleral topography, and apical clearance.
        Cont Lens Anterior Eye. 2020; 43: 562-567https://doi.org/10.1016/j.clae.2019.11.013
        • Rozema J.J.
        • Hastings G.D.
        • Jiménez-García M.
        • Koppen C.
        • Applegate R.A.J.O.
        Influence of rigid lens decentration and rotation on visual image quality in normal and keratoconic eyes.
        Ophthalmic Physiol Opt. 2022; 42: 1204-1213https://doi.org/10.1111/opo.13045
        • Markoulli M.
        • Fedtke C.
        • Coroneo M.
        • Kalloniatis M.
        • Whatham A.
        • Yapp M.
        • et al.
        Clinical utility of irx3 in keratoconus.
        Clin Exp Optom. 2021; 104: 107-114https://doi.org/10.1111/cxo.13133