Advertisement

Antiamoebic properties of Methyltrioctylammonium chloride based deep eutectic solvents

Published:October 13, 2022DOI:https://doi.org/10.1016/j.clae.2022.101758

      Abstract

      Purpose

      This aim of this study was to assess anti-parasitic properties of deep eutectic solvents against eye pathogen, Acanthamoeba, often associated with the use of contact lens.

      Methods

      Assays were performed to investigate the effects of various Methyltrioctylammonium chloride-based deep eutectic solvents on Acanthamoeba castellanii, comprising amoebicidal assays, encystment assays, excystment assays, cytotoxicity assays by measuring lactate dehydrogenase release from human cells, and cytopathogenicity assays to determine parasite-mediated host cell death.

      Results

      In a 2 h incubation period, DES-B, DES-C, DES-D, and DES-E exhibited up to 85 % amoebicidal activity at micromolar doses, which was enhanced further following 24 h incubation. When tested in encystment assays, selected deep eutectic solvents abolished cyst formation and were able to block excystment of A. castellanii. All solvents exhibited minimal human cell cytotoxicity except DES-D. Finally, all tested deep eutectic solvents inhibited amoeba-mediated cytopathogenicity, except DES-B.

      Conclusions

      Deep eutectic solvents show potent antiamoebic effects. These findings are promising and could lead to the development of novel contact lens disinfectants, as well as opening several avenues to explore the molecular mechanisms, various doses and incubation periods, and use of different bases against Acanthamoeba castellanii.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abedi B.
        • Azadi D.
        • Hajihossein R.
        • Khodashenas S.
        • Ghaffari K.
        • Mosayebi M.
        Isolation and molecular identification of Acanthamoeba spp. from hospital dust and soil of Khomein, Iran, as reservoir for nosocomial infection.
        Parasite Epidemiol Control. 2021; 15: e00224
        • Abjani F.
        • Khan N.A.
        • Yousuf F.A.
        • Siddiqui R.
        Targeting cyst wall is an effective strategy in improving the efficacy of marketed contact lens disinfecting solutions against Acanthamoeba castellanii cysts.
        Contact Lens and Anterior Eye. 2016; 39: 239-243
        • Akbar N.
        • Khan N.A.
        • Sagathevan K.
        • Iqbal M.
        • Tawab A.
        • Siddiqui R.
        Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules.
        Sci Rep. 2019; 9: 1-19
        • Akbar N.
        • Siddiqui R.
        • Khamis M.
        • Ibrahim T.
        • Khan N.A.
        Cationic surfactant-natural clay complex as a novel agent against Acanthamoeba castellanii belonging to the T4 genotype.
        Eye Contact Lens. 2021; 47: 592-597
        • Anwar A.
        • Numan A.
        • Siddiqui R.
        • Khalid M.
        • Khan N.A.
        Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii.
        Parasites Vectors. 2019; 12: 1-10
        • Anwar A.
        • Yi Y.P.
        • Fatima I.
        • Khan K.M.
        • Siddiqui R.
        • Khan N.A.
        • et al.
        Antiamoebic activity of synthetic tetrazoles against Acanthamoeba castellanii belonging to T4 genotype and effects of conjugation with silver nanoparticles.
        Parasitol Res. 2020; 119: 1943-1954
        • Chavatte N.
        • Baré J.
        • Lambrecht E.
        • Van Damme I.
        • Vaerewijck M.
        • Sabbe K.
        • et al.
        Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety.
        Int J Food Microbiol. 2014; 191: 89-96
        • Chia S.P.S.
        • Kong S.L.Y.
        • Pang J.K.S.
        • Soh B.S.
        3D human organoids: the next “viral” model for the molecular basis of infectious diseases.
        Biomedicines. 2022; 10: 1541
        • de Lacerda A.G.
        • Lira M.
        Acanthamoeba keratitis: a review of biology, pathophysiology and epidemiology.
        Ophthalmic Physiol Opt. 2021; 41: 116-135
        • Dudley R.
        • Jarroll E.L.
        • Khan N.A.
        Carbohydrate analysis of Acanthamoeba castellanii.
        Exp Parasitol. 2009; 122: 338-343
        • Emami S.
        • Shayanfar A.
        Deep eutectic solvents for pharmaceutical formulation and drug delivery applications.
        Pharm Dev Technol. 2020; 25: 779-796
        • Fanselow N.
        • Sirajuddin N.
        • Yin X.T.
        • Huang A.J.
        • Stuart P.M.
        Acanthamoeba keratitis, pathology, diagnosis and treatment.
        Pathogens. 2021; 10: 323
        • Farooq M.Q.
        • Abbasi N.M.
        • Anderson J.L.
        Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography.
        J Chromatogr A. 2020; 1633: 461613
        • Garajová M.
        • Mrva M.
        • Vaškovicová N.
        • Martinka M.
        • Melicherová J.
        • Valigurová A.
        Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture.
        Sci Rep. 2019; 9: 1-21
        • Juneidi I.
        • Hayyan M.
        • Ali O.M.
        Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.
        Environ Sci Pollut Res. 2016; 23: 7648-7659
        • Juneidi I.
        • Hayyan M.
        • Hashim M.A.
        Intensification of biotransformations using deep eutectic solvents: Overview and outlook.
        Process Biochem. 2018; 66: 33-60
        • Kalra S.K.
        • Sharma P.
        • Shyam K.
        • Tejan N.
        • Ghoshal U.
        Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis.
        Exp Parasitol. 2020; 208: 107788
        • Khan A.S.
        • Ibrahim T.H.
        • Jabbar N.A.
        • Khamis M.I.
        • Nancarrow P.
        • Mjalli F.S.
        Ionic liquids and deep eutectic solvents for the recovery of phenolic compounds: effect of ionic liquids structure and process parameters.
        RSC Adv. 2021; 11: 12398-12422
        • Lin T.-L.
        • Zeng W.-T.
        • Duan F.
        • Pei Y.-H.
        • Liu X.-P.
        • Shang F.u.
        • et al.
        Anti-viral activity of Staphylococcus aureus lysates against herpes simplex virus type-I infection: an in vitro and in vivo study.
        Int J Ophthalmol. 2021; 14: 1463-1472
        • Lomba L.
        • García C.B.
        • Ribate M.P.
        • Giner B.
        • Zuriaga E.
        Applications of deep eutectic solvents related to health, synthesis, and extraction of natural based chemicals.
        Appl Sci. 2021; 11: 10156
        • Lorenzo-Morales J.
        • Martín-Navarro C.M.
        • López-Arencibia A.
        • Arnalich-Montiel F.
        • Piñero J.E.
        • Valladares B.
        Acanthamoeba keratitis: an emerging disease gathering importance worldwide?.
        Trends Parasitol. 2013; 29: 181-187
        • Lorenzo-Morales J.
        • Martín-Navarro C.M.
        • López-Arencibia A.
        • Santana-Morales M.A.
        • Afonso-Lehmann R.N.
        • Maciver S.K.
        • et al.
        Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba.
        Antimicrob Agents Chemother. 2010; 54: 5151-5155
        • Loufouma Mbouaka A.
        • Leitsch D.
        • Koehsler M.
        • Walochnik J.
        Antimicrobial effect of auranofin against Acanthamoeba spp.
        Int J Antimicrob Agents. 2021; 58: 106425
        • Nadia B.A.
        • Anis M.
        • Ali S.M.
        • Ahmed M.
        • Sana R.
        • Mohamed G.
        • et al.
        Acanthamoeba keratitis in contact lens wearers in a tertiary center of Tunisia, North Africa.
        Annals of Medicine and Surgery. 2021; 70: 102834
        • Pedro S.N.
        • Freire C.S.R.
        • Silvestre A.J.D.
        • Freire M.G.
        Deep Eutectic Solvents and Pharmaceuticals.
        Encyclopedia. 2021; 1: 942-963
        • Radošević K.
        • Čanak I.
        • Panić M.
        • Markov K.
        • Bubalo M.C.
        • Frece J.
        • et al.
        Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents.
        Environ Sci Pollut Res. 2018; 25: 14188-14196
        • Randag A.C.
        • van Rooij J.
        • van Goor A.T.
        • Verkerk S.
        • Wisse R.P.L.
        • Saelens I.E.Y.
        • et al.
        The rising incidence of Acanthamoeba keratitis: a 7-year nationwide survey and clinical assessment of risk factors and functional outcomes.
        PLoS ONE. 2019; 14: e0222092
        • Raucci M.G.
        • Alvarez-Perez M.A.
        • Demitri C.
        • Giugliano D.
        • De Benedictis V.
        • Sannino A.
        • et al.
        Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation.
        J Biomed Mater Res Part A. 2015; 103: 2045-2056
        • Rayamajhee B.
        • Subedi D.
        • Peguda H.K.
        • Willcox M.D.
        • Henriquez F.L.
        • Carnt N.
        A systematic review of intracellular microorganisms within Acanthamoeba to understand potential impact for infection.
        Pathogens. 2021; 10: 225
        • Shahbaz M.S.
        • Anwar A.
        • Saad S.M.
        • Anwar A.
        • Khan K.M.
        • et al.
        Antiamoebic activity of 3-aryl-6, 7-dimethoxyquinazolin-4 (3 H)-one library against Acanthamoeba castellanii.
        Parasitol Res. 2020; 119: 2327-2335
        • Siddiqui R.
        • Ong T.Y.Y.
        • Jung S.Y.
        • Khan N.A.
        Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes.
        Exp Parasitol. 2017; 183: 128-132
        • Siddiqui R.
        • Roberts S.K.
        • Ong T.Y.Y.
        • Mungroo M.R.
        • Anwar A.
        • Khan N.A.
        Novel insights into the potential role of ion transport in sensory perception in Acanthamoeba.
        Parasites Vectors. 2019; 12: 1-8
      1. Somani SN, Ronquillo Y, Moshirfar M, 2019. Acanthamoeba keratitis.

        • Tang B.
        • Bi W.
        • Zhang H.
        • Row K.H.
        Deep eutectic solvent-based HS-SME coupled with GC for the analysis of bioactive terpenoids in Chamaecyparis obtusa leaves.
        Chromatographia. 2014; 77: 373-377
        • Thomson S.
        • Rice C.A.
        • Zhang T.
        • Edrada-Ebel R.
        • Henriquez F.L.
        • Roberts C.W.
        Characterisation of sterol biosynthesis and validation of 14α-demethylase as a drug target in Acanthamoeba.
        Sci Rep. 2017; 7: 1-9
        • Wasewar K.L.
        SeparationofLacticAcid: RecentAdvances.
        Chem Biochem Eng Q. 2005; 19: 159-172
        • Wekerle M.
        • Engel J.
        • Walochnik J.
        Anti-Acanthamoeba disinfection: hands, surfaces and wounds.
        Int J Antimicrob Agents. 2020; 56106122
        • Zainal-Abidin M.H.
        • Hayyan M.
        • Ngoh G.C.
        • Wong W.F.
        • Looi C.Y.
        Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems.
        J Control Release. 2019; 316: 168-195
        • Zdanowicz M.
        • Wilpiszewska K.
        • Spychaj T.
        Deep eutectic solvents for polysaccharides processing. A review.
        Carbohydrate Polymers. 2018; 200: 361-380