Segmentation methods and morphometry of confocal microscopy imaged corneal epithelial cells

  • Pradipta Bhattacharya
    Corresponding author at: 60 Musk Ave, Kelvin Grove, Qld, 4059, Australia.
    School of Optometry and Vision Sciences and Centre for Vision and Eye Research, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
    Search for articles by this author
  • Katie Edwards
    School of Optometry and Vision Sciences and Centre for Vision and Eye Research, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
    Search for articles by this author
  • Katrina L. Schmid
    School of Optometry and Vision Sciences and Centre for Vision and Eye Research, Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
    Search for articles by this author



      To develop and explore automated cell identification and segmentation methods for morphometry of confocal microscopy imaged corneal epithelial cells using ImageJ software.


      In vivo confocal microscopy images of the intermediate (wing) and basal cell layers of the central and peripheral corneas of 20 healthy participants were analysed. The intermediate and basal cell areas obtained using the two new techniques (i.e., manual- and auto- thresholding) were compared with the widely used manual tracing technique. A predefined range of epithelial cell morphometric parameters was used as image descriptors to improve cell identification and segmentation.


      The mean intermediate cell area obtained using the manual tracing (central; 120 ± 14 µm2, peripheral; 123 ± 15 µm2) was statistically similar (p > 0.05) to the manual thresholding (central; 119 ± 7 µm2, peripheral; 119 ± 8) but not with the auto thresholding technique (central; 101 ± 8 µm2, peripheral; 101 ± 7 µm2). Bland-Altman limits of agreement for the mean difference (measurement bias) in central and peripheral intermediate cell area determined via manual tracing and manual thresholding techniques were 1 µm2 (+25 to − 23 µm2) and 4 µm2 (+29.8 to − 21.9 µm2). There were statistically significant differences in basal cell area between the three methods.


      The manual thresholding technique may be used for automated identification and segmentation of corneal epithelial intermediate cells (central and peripheral) for assessing various morphometric parameters. However, measurement of the corneal epithelial basal cells is less reliable using thresholding techniques.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Sridhar M.S.
        Anatomy of cornea and ocular surface.
        Indian J Ophthalmol. 2018; 66: 190-194
        • Nishida T.
        • Saika S.
        Cornea. Elsevier, 2011: 3-24
        • Aitken D.A.
        • Beirouty Z.A.
        • Lee W.R.
        Ultrastructural study of the corneal epithelium in the recurrent erosion syndrome.
        Br J Ophthalmol. 1995; 79: 282-289
        • McFarland J.L.
        • Laing R.A.
        • Oak S.S.
        Specular microscopy of corneal epithelium.
        Arch Ophthalmol. 1983; 101: 451-454
        • Szaflik J.P.
        Comparison of in vivo confocal microscopy of human cornea by white light scanning slit and laser scanning systems.
        Cornea. 2007; 26: 438-445
        • Harrison D.A.
        • Joos C.
        • Ambrósio, R.
        Morphology of corneal basal epithelial cells by in vivo slit-scanning confocal microscopy.
        Cornea. 2003; 22: 246-248
        • Romano A.C.
        • Espana E.M.
        • Yoo S.H.
        • Budak M.T.
        • Wolosin J.M.
        • Tseng S.C.
        Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry.
        Invest Ophthalmol Vis Sci. 2003; 44: 5125-5129
        • Tsubota K.
        • Yamada M.
        • Naoi S.
        Specular microscopic observation of normal human corneal epithelium.
        Ophthalmology. 1992; 99: 89-94
        • Alkabes M.
        • Mazzolani F.
        • Ratiglia R.
        • Orzalesi N.
        A comparison of HRT II with the Rostock cornea Module and CONFOSCAN 2 confocal microscopes.
        Invest Ophthalmol Vis Sci. 2007; 48: 3880
        • Patel D.V.
        • McGhee C.NJ.
        Contemporary in vivo confocal microscopy of the living human cornea using white light and laser scanning techniques: a major review.
        Clin Exp Ophthalmol. 2007; 35: 71-88
        • Salvetat M.L.
        • Zeppieri M.
        • Miani F.
        • Parisi L.
        • Felletti M.
        • Brusini P.
        Comparison between laser scanning in vivo confocal microscopy and noncontact specular microscopy in assessing corneal endothelial cell density and central corneal thickness.
        Cornea. 2011; 30: 754-759
        • Patel D.V.
        • McGhee C.N.
        Quantitative analysis of in vivo confocal microscopy images: a review.
        Surv Ophthalmol. 2013; 58: 466-475
        • Prakasam R.K.
        • Winter K.
        • Schwiede M.
        • Allgeier S.
        • Zhivov A.
        • Köhler B.
        • et al.
        Characteristic quantities of corneal epithelial structures in confocal laser scanning microscopic volume data sets.
        Cornea. 2013; 32: 636-643
        • Sterenczak K.A.
        • Winter K.
        • Sperlich K.
        • Stahnke T.
        • Linke S.
        • Farrokhi S.
        • et al.
        Morphological characterization of the human corneal epithelium by in vivo confocal laser scanning microscopy.
        Quant Imaging Med Surg. 2021; 11: 1737-1750
        • Sindt C.W.
        • Lay B.
        • Bouchard H.
        • Kern J.R.
        Rapid image evaluation system for corneal in vivo confocal microscopy.
        Cornea. 2013; 32: 460-465
        • Gaujoux T.
        • Touzeau O.
        • Laroche L.
        • Borderie V.M.
        Morphometry of corneal epithelial cells on normal eyes and after anterior lamellar keratoplasty.
        Cornea. 2010; 29: 1118-1124
        • Canavesi C.
        • Cogliati A.
        • Hindman H.B.
        Unbiased corneal tissue analysis using Gabor-domain optical coherence microscopy and machine learning for automatic segmentation of corneal endothelial cells.
        J Biomed Opt. 2020; 25: 1-17
        • Bullet J.
        • Gaujoux T.
        • Borderie V.
        • Bloch I.
        • Laroche L.
        A reproducible automated segmentation algorithm for corneal epithelium cell images from in vivo laser scanning confocal microscopy.
        Acta Ophthalmol. 2014; 92: e312-e316
      1. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics international 2004;11:36-42.

      2. Herrera-Pereda R, Crispi AT, Babin D, Philips W, Costa MH. A Review on Digital Image Processing Techniques for In-Vivo Confocal Images of the Cornea. Med Image Anal 2021;73:102188.

        • Bhattacharya P.
        • Edwards K.
        • Harkin D.
        • Schmid K.L.
        Central corneal basal cell density and nerve parameters in ocular surface disease and limbal stem cell deficiency: a review and meta-analysis.
        Br J Ophthalmol. 2020; 104: 1633-1639
        • Miller K.L.
        • Walt J.G.
        • Mink D.R.
        • Satram-Hoang S.
        • Wilson S.E.
        • Perry H.D.
        • et al.
        Minimal clinically important difference for the ocular surface disease index.
        Arch Ophthalmol. 2010; 128: 94-101
      3. Guthoff R.F. Baudouin C. Stave J. Atlas of Confocal Laser Scanning In-vivo Microscopy in Ophthalmology. Springer Berlin Heidelberg, Berlin, Heidelberg2006
      4. Lagali N, Peebo BB, Germundsson J, Edén U, Danyali R, Rinaldo M, Fagerholm P. Laser-scanning in vivo confocal microscopy of the cornea: imaging and analysis methods for preclinical and clinical applications. In: Confocal Laser Microscopy—Principles and Applications in Medicine, Biology, and the Food Sciences. Intech, 2013:55-57.

      5. Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul Surf 2017;15:15-4.

        • Baviskar S.N.
        A quick & automated method for measuring cell area using ImageJ.
        Am Biol Teach. 2011; 73: 554-556
        • Cousty J.
        • Bertrand G.
        • Najman L.
        • Couprie M.
        Watershed cuts: minimum spanning forests and the drop of water principle.
        IEEE Trans Pattern Anal Mach Intell. 2009; 31: 1362-1374
        • Prakasam R.K.
        • Kowtharapu B.S.
        • Falke K.
        • Winter K.
        • Diedrich D.
        • Glass A.
        • et al.
        Quantitative assessment of central and limbal epithelium after long-term wear of soft contact lenses and in patients with dry eyes: a pilot study.
        Eye. 2016; 30: 979-986
        • Patel D.V.
        • Sherwin T.
        • McGhee C.N.
        Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus.
        Invest Ophthalmol Vis Sci. 2006; 47: 2823-2827
        • Mustonen R.K.
        • McDonald M.B.
        • Srivannaboon S.
        • Tan A.L.
        • Doubrava M.W.
        • Kim C.K.
        Normal human corneal cell populations evaluated by in vivo scanning slit confocal microscopy.
        Cornea. 1998; 17: 485-492
      6. van Stralen KJ, Dekker FW, Zoccali C, Jager KJ. Measuring agreement, more complicated than it seems. Nephron Clin Pract 2012;120:c162-7.

        • Doğan N.Ö.
        Bland-Altman analysis: A paradigm to understand correlation and agreement.
        Turk J Emerg Med. 2018; 18: 139-141
        • Doughty M.J.
        Morphometric analysis of the surface cells of rabbit corneal epithelium by scanning electron microscopy.
        Am J Anat. 1990; 189: 316-328
        • Doughty M.J.
        Further assessment of the size, shape and surface features of superficial cells of the bovine corneal epithelium, using scanning electron microscopy.
        Curr Eye Res. 2004; 28: 203-214
        • Lenart T.D.
        • McCannel C.A.
        • Baratz K.H.
        • Robertson D.M.
        A contact lens as an artificial cornea for improved visualization during practice surgery on cadaver eyes.
        Arch Ophthalmol. 2003; 121: 16-19
        • Zhivov A.
        • Stachs O.
        • Kraak R.
        • Stave J.
        • Guthoff R.F.
        In vivo confocal microscopy of the ocular surface.
        Ocul Surf. 2006; 4: 81-93
        • Mehta N.
        • Braun P.X.
        • Gendelman I.
        • Alibhai A.Y.
        • Arya M.
        • Duker J.S.
        • et al.
        Repeatability of binarization thresholding methods for optical coherence tomography angiography image quantification.
        Sci Rep. 2020; 10: 15368
        • Preim B.
        • Botha C.P.
        Visual computing for medicine: theory, algorithms.
        and applications. Morgan Kaufmann Publishers, 2014
        • Gambato C.
        • Longhin E.
        • Catania A.G.
        • Lazzarini D.
        • Parrozzani R.
        • Midena E.
        Aging and corneal layers: an in vivo corneal confocal microscopy study.
        Graefes Arch Clin Exp Ophthalmol. 2015; 253: 267-275
        • Zheng T.
        • Le Q.
        • Hong J.
        • Xu J.
        Comparison of human corneal cell density by age and corneal location: an in vivo confocal microscopy study.
        BMC Ophthalmol. 2016; 16: 109
        • Yi X.
        • Wang Y.
        • Yu F.S.
        Corneal epithelial tight junctions and their response to lipopolysaccharide challenge.
        Invest Ophthalmol Vis Sci. 2000; 41: 4093-4100
        • Ko J.A.
        • Liu Y.
        • Yanai R.
        • Chikama T.
        • Takezawa T.
        • Nishida T.
        Upregulation of tight-junctional proteins in corneal epithelial cells by corneal fibroblasts in collagen vitrigel cultures.
        Invest Ophthalmol Vis Sci. 2008; 49: 113-119