Advertisement

Accommodation and vergence function in children using atropine combined with orthokeratology

      Abstract

      Purpose

      This study aimed to evaluate binocular vision in terms of vergence and accommodative measurements in children treated with 0.01% atropine combined with orthokeratology (OK).

      Methods

      This was a prospective and randomized controlled clinical trial involving participants aged 8 to 12 years, with a spherical equivalent (SE) ranging from − 1.00 to − 6.00D. Participants were randomly divided into four groups: 1) a combination group using 0.01% atropine solution and OK lens; 2) an OK group using placebo solution and OK lens; 3) an atropine group using 0.01% atropine solution and wearing spectacles; and 4) a control group using placebo solution and wearing spectacles. Binocular vision was determined at baseline and at 3-month visits, with evaluations including horizontal phoria, fusional vergence, the accommodative convergence/accommodation (AC/A) ratio, accommodative lag, and accommodative amplitude (AA). The Wilcoxon signed-rank test was used to compare the changes in binocular vision in each group, and the Kruskal–Wallis test was used for comparisons of four groups.

      Results

      Sixty-two participants completed the study. There was no significant difference in baseline refraction, accommodation or vergence measurements among the groups (all P > 0.05). Three months later, the accommodative lag significantly decreased in the OK group (P = 0.002) but remained unchanged in the other three groups (all P > 0.05). In addition, binocular accommodative facilities and positive relative accommodations increased in the combination and OK groups (both P < 0.05) but remained unchanged in the atropine and control groups (both P > 0.05). Only the participants with esophoria in the OK group had a significant decrease in esophoria (P = 0.008). Moreover, the changes in fusional vergence and AC/A did not significantly differ between the four groups (all P > 0.05).

      Conclusion

      Accommodative measurements changed similarly in the groups treated with OK. Changes in vergence measurements after treatment with 0.01% atropine were not significant.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Morgan I.G.
        • Ohno-Matsui K.
        • Saw S.M.
        Myopia.
        Lancet. 2012; 379: 1739-1748https://doi.org/10.1016/s0140-6736(12)60272-4
        • Lin L.L.
        • Shih Y.F.
        • Hsiao C.K.
        • Chen C.J.
        Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000.
        Ann Acad Med Singap. 2004; 33: 27-33
        • Wu P.C.
        • Huang H.M.
        • Yu H.J.
        • Fang P.C.
        • Chen C.T.
        Epidemiology of myopia.
        Asia Pac J Ophthalmol (Phila). 2016; 5: 386-393https://doi.org/10.1097/apo.0000000000000236
        • Flitcroft D.I.
        The complex interactions of retinal, optical and environmental factors in myopia aetiology.
        Prog Retin Eye Res. 2012; 31: 622-660https://doi.org/10.1016/j.preteyeres.2012.06.004
        • Cooper J.
        • Tkatchenko A.V.
        A review of current concepts of the etiology and treatment of myopia.
        Eye Contact Lens. 2018; 44: 231-247https://doi.org/10.1097/icl.0000000000000499
        • Tedja M.S.
        • Haarman A.E.G.
        • Meester-Smoor M.A.
        • Kaprio J.
        • Mackey D.A.
        • Guggenheim J.A.
        • et al.
        IMI – Myopia genetics report.
        Invest Ophthalmol Vis Sci. 2019; 60: M89
        • Ip J.M.
        • Saw S.M.
        • Rose K.A.
        • Morgan I.G.
        • Kifley A.
        • Wang J.J.
        • et al.
        Role of near work in myopia: findings in a sample of Australian school children.
        Invest Ophthalmol Vis Sci. 2008; 49: 2903-2910https://doi.org/10.1167/iovs.07-0804
        • Xiong S.
        • Sankaridurg P.
        • Naduvilath T.
        • Zang J.
        • Zou H.
        • Zhu J.
        • et al.
        Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review.
        Acta Ophthalmol. 2017; 95: 551-566
        • Mutti D.O.
        • Mitchell G.L.
        • Hayes J.R.
        • Jones L.A.
        • Moeschberger M.L.
        • Cotter S.A.
        • et al.
        Accommodative lag before and after the onset of myopia.
        Invest Ophthalmol Vis Sci. 2006; 47: 837
        • Gwiazda J.E.
        • Hyman L.
        • Norton T.T.
        • Hussein M.E.M.
        • Marsh-Tootle W.
        • Manny R.
        • et al.
        Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children.
        Invest Ophthalmol Vis Sci. 2004; 45: 2143
        • Mutti D.O.
        • Mitchell G.L.
        • Jones-Jordan L.A.
        • Cotter S.A.
        • Kleinstein R.N.
        • Manny R.E.
        • et al.
        The response AC/A ratio before and after the onset of myopia.
        Invest Ophthalmol Vis Sci. 2017; 58: 1594
      1. Walline JJ, Lindsley KB, Vedula SS, Cotter SA, Mutti DO, Ng SM, et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev 2020;1(1):Cd004916. https://doi.org/10.1002/14651858.CD004916.pub4.

        • Gifford K.
        • Gifford P.
        • Hendicott P.L.
        • Schmid K.L.
        Near binocular visual function in young adult orthokeratology versus soft contact lens wearers.
        Cont Lens Anterior Eye. 2017; 40: 184-189https://doi.org/10.1016/j.clae.2017.01.003
        • Batres L.
        • Peruzzo S.
        • Serramito M.
        • Carracedo G.
        Accommodation response and spherical aberration during orthokeratology.
        Graefes Arch Clin Exp Ophthalmol. 2020; 258: 117-127https://doi.org/10.1007/s00417-019-04504-x
        • Felipe-Marquez G.
        • Nombela-Palomo M.
        • Palomo-Álvarez C.
        • Cacho I.
        • Nieto-Bona A.
        Binocular function changes produced in response to overnight orthokeratology.
        Graefes Arch Clin Exp Ophthalmol. 2017; 255: 179-188https://doi.org/10.1007/s00417-016-3554-0
        • Felipe-Marquez G.
        • Nombela-Palomo M.
        • Cacho I.
        • Nieto-Bona A.
        Accommodative changes produced in response to overnight orthokeratology.
        Graefes Arch Clin Exp Ophthalmol. 2015; 253: 619-626https://doi.org/10.1007/s00417-014-2865-2
        • Kaymak H.
        • Fricke A.
        • Mauritz Y.
        • Löwinger A.
        • Klabe K.
        • Breyer D.
        • et al.
        Short-term effects of low-concentration atropine eye drops on pupil size and accommodation in young adult subjects.
        Graefes Arch Clin Exp Ophthalmol. 2018; 256: 2211-2217
        • Fu A.
        • Stapleton F.
        • Wei L.
        • Wang W.
        • Zhao B.
        • Watt K.
        • et al.
        Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression.
        Br J Ophthalmol. 2020; 104: 1535-1541https://doi.org/10.1136/bjophthalmol-2019-315440
        • Yam J.C.
        • Li F.F.
        • Zhang X.
        • Tang S.M.
        • Yip B.H.K.
        • Kam K.W.
        • et al.
        Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study: phase 2 report.
        Ophthalmology. 2020; 127: 910-919https://doi.org/10.1016/j.ophtha.2019.12.011
        • Tran H.D.M.
        • Sankaridurg P.
        • Naduvilath T.
        • Ha T.T.X.
        • Tran T.D.
        • Jong M.
        • et al.
        A meta-analysis assessing change in pupillary diameter, accommodative amplitude, and efficacy of atropine for myopia control.
        Asia Pac J Ophthalmol (Phila). 2021; 10: 450-460https://doi.org/10.1097/apo.0000000000000414
        • Kinoshita N.
        • Konno Y.
        • Hamada N.
        • Kanda Y.
        • Shimmura-Tomita M.
        • Kakehashi A.
        Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results.
        Jpn J Ophthalmol. 2018; 62: 544-553https://doi.org/10.1007/s10384-018-0608-3
        • Wan L.
        • Wei C.-C.
        • Chen C.
        • Chang C.-Y.
        • Lin C.-J.
        • Chen J.
        • et al.
        The synergistic effects of orthokeratology and atropine in slowing the progression of myopia.
        J Clin Med. 2018; 7: 259
        • Chen Z.
        • Huang S.
        • Zhou J.
        • Xiaomei Q.
        • Zhou X.
        • Xue F.
        Adjunctive effect of orthokeratology and low dose atropine on axial elongation in fast-progressing myopic children-A preliminary retrospective study.
        Cont Lens Anterior Eye. 2019; 42: 439-442https://doi.org/10.1016/j.clae.2018.10.026
        • Tan Q.
        • Ng A.L.
        • Choy B.N.
        • Cheng G.P.
        • Woo V.C.
        • Cho P.
        One-year results of 0.01% atropine with orthokeratology (AOK) study: a randomised clinical trial.
        Ophthalmic Physiol Opt. 2020; 40: 557-566https://doi.org/10.1111/opo.12722
        • Ren Q.
        • Yue H.
        • Zhou Q.
        Effects of orthokeratology lenses on the magnitude of accommodative lag and accommodativeconvergence/accommodation.
        Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2016; 41: 169-173
        • Han X.
        • Xu D.
        • Ge W.
        • Wang Z.
        • Li X.
        • Liu W.
        A comparison of the effects of orthokeratology lens, medcall lens, and ordinary frame glasses on the accommodative response in myopic children.
        Eye Contact Lens. 2018; 44: 268-271https://doi.org/10.1097/icl.0000000000000390
        • Alpern M.
        Accommodation and convergence with contact lenses.
        Am J Optom Arch Am Acad Optom. 1949; 26: 379-387https://doi.org/10.1097/00006324-194909000-00002
        • Manny R.E.
        • Chandler D.L.
        • Scheiman M.M.
        • Gwiazda J.E.
        • Cotter S.A.
        • Everett D.F.
        • et al.
        Accommodative lag by autorefraction and two dynamic retinoscopy methods.
        Optom Vis Sci. 2009; 86: 233-243https://doi.org/10.1097/OPX.0b013e318197180c
        • Tassinari J.
        Comparison between MEM and nott dynamic retinoscopy.
        Optom Vis Sci. 2000; 77: 119-120https://doi.org/10.1097/00006324-200003000-00008
        • Tan D.
        • Tay S.A.
        • Loh K.L.
        • Chia A.
        Topical atropine in the control of myopia.
        Asia Pac J Ophthalmol (Phila). 2016; 5: 424-428https://doi.org/10.1097/apo.0000000000000232