Advertisement

The effect of concentric and aspheric multifocal soft contact lenses on binocular vision in young adult myopes

  • Katrina L Schmid
    Correspondence
    Corresponding author at: Centre for Vision and Eye Research, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Qld 4059, Australia.
    Affiliations
    School of Optometry and Vision Science, Centre for Vision and Eye Research, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Qld 4059, Australia
    Search for articles by this author
  • Kate L. Gifford
    Affiliations
    School of Optometry and Vision Science, Centre for Vision and Eye Research, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Qld 4059, Australia

    Myopia Profile Pty Ltd, Australia
    Search for articles by this author
  • David A. Atchison
    Affiliations
    School of Optometry and Vision Science, Centre for Vision and Eye Research, Faculty of Health, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Qld 4059, Australia
    Search for articles by this author
Published:March 15, 2022DOI:https://doi.org/10.1016/j.clae.2022.101588

      Abstract

      Purpose

      Multifocal soft contact lenses (MFCLs) are prescribed to inhibit myopia progression; these include aspheric and concentric designs. The effects of MFCLs on visual quality, accommodation and vergence in young-adult myopes were evaluated.

      Methods

      Participants were twenty-six myopes (19–25 years, spherical equivalent −0.50 to −5.75D), with normal binocular vision and no past myopia control. Pupil sizes were 4.4 ± 0.9 mm during distance viewing and 3.7 ± 0.8 mm at near. In random order, participants wore four MFCLs: Proclear single vision distance, MiSight concentric dual focus (+2.00D), distance center aspheric (Biofinity, +2.50D) (CooperVision lenses), and NaturalVue aspheric (Visioneering Technologies). Testing included visual acuity, contrast sensitivity (Pelli-Robson), stereoacuity, accommodation response, negative and positive relative accommodation, horizontal phorias, horizontal fusional vergence and AC/A ratio, and a visual quality questionnaire.

      Results

      The four lenses differed in distance (p = 0.001) and near visual acuity (p = 0.011), and contrast sensitivity (p = 0.001). Compared with the single vision lens, the Biofinity aspheric had the greatest visual impact: 0.19 ± 0.14 logMAR distance acuity reduction, 0.22 ± 0.15 log contrast sensitivity reduction. Near acuity was affected less than distance acuity; the reduction was greatest with the NaturalVue (0.05 ± 0.07 logMAR reduction). The MFCLs altered the autorefraction measure at distance and near (p = 0.001); the accommodation response was less with aspheric lenses. Negative relative accommodation reduced with the aspheric lenses (p = 0.001): by 0.9 ± 0.5D with Biofinity and 0.5 ± 0.7D with NaturalVue. Exophoric shifts were greater with aspheric lenses (1.8 ± 2.4Δ Biofinity, 1.7 ± 1.7Δ NaturalVue) than with the concentric MiSight (0.5 ± 1.3Δ).

      Conclusions

      MFCLs alter visual performance, refraction and vergence; two aspheric lenses had greater effect than a concentric lens.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lee Y.Y.
        • Lo C.T.
        • Sheu S.J.
        • Lin J.L.
        What factors are associated with myopia in young adults? A survey study in Taiwan Military Conscripts.
        Invest Ophthalmol Vis Sci. 2013; 54: 1026-1033https://doi.org/10.1167/iovs.12-10480
        • Morgan I.G.
        • French A.N.
        • Ashby R.S.
        • Guo X.
        • Ding X.
        • He M.
        • et al.
        The epidemics of myopia: aetiology and prevention.
        Prog Retin Eye Res. 2018; 62: 134-149https://doi.org/10.1016/j.preteyeres.2017.09.004
        • Morgan I.G.
        • Wu P.-C.
        • Ostrin L.A.
        • Tideman J.W.L.
        • Yam J.C.
        • Lan W.
        • et al.
        IMI risk factors for myopia.
        Invest Ophthalmol Vis Sci. 2021; 62: 3
        • Gifford L.P.
        • Gifford L.K.
        The future of myopia control contact lenses.
        Optom Vis Sci. 2016; 93: 336-343https://doi.org/10.1097/OPX.0000000000000762
        • Huang J.
        • Wen D.
        • Wang Q.
        • McAlinden C.
        • Flitcroft I.
        • Chen H.
        • et al.
        Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis.
        Ophthalmology. 2016; 123: 697-708
        • Li S.-M.
        • Kang M.-T.
        • Wu S.-S.
        • Meng B.o.
        • Sun Y.-Y.
        • Wei S.-F.
        • et al.
        Studies using concentric ring bifocal and peripheral add multifocal contact lenses to slow myopia progression in school-aged children: a meta-analysis.
        Ophthalmic Physiol Opt. 2017; 37: 51-59
        • Walline J.J.
        • Walker M.K.
        • Mutti D.O.
        • Jones-Jordan L.A.
        • Sinnott L.T.
        • Giannoni A.G.
        • et al.
        Effect of high add power, medium add power, or single-vision contact lenses on myopia progression in children: the BLINK randomized clinical trial.
        JAMA. 2020; 324: 571
        • Cooper J.
        • O'Connor B.
        • Watanabe R.
        • Fuerst R.
        • Berger S.
        • Eisenberg N.
        • et al.
        Case series analysis of myopic progression control with a unique extended depth of focus multifocal contact lens.
        Eye Contact Lens. 2018; 44: e16-e24
        • Chamberlain P.
        • Peixoto-de-Matos S.C.
        • Logan N.S.
        • Ngo C.
        • Jones D.
        • Young G.
        A 3-year randomized clinical trial of MiSight lenses for myopia control.
        Optom Vis Sci. 2019; 96: 556-567https://doi.org/10.1097/OPX.0000000000001410
        • Kollbaum P.S.
        • Jansen M.E.
        • Tan J.
        • Meyer D.M.
        • Rickert M.E.
        Vision performance with a contact lens designed to slow myopia progression.
        Optom Vis Sci. 2013; 90: 205-214https://doi.org/10.1097/OPX.0b013e3182812205
        • Gregory H.R.
        • Nti A.N.
        • Wolffsohn J.S.
        • Berntsen D.A.
        • Ritchey E.R.
        Visual performance of center-distance multifocal contact lenses fit using a myopia control paradigm.
        Optom Vis Sci. 2021; 98: 272-279https://doi.org/10.1097/OPX.0000000000001665
        • Jaisankar D.
        • Liu Y.
        • Kollbaum P.
        • Jaskulski M.
        • Gifford P.
        • Suheimat M.
        • et al.
        Nasal-temporal asymmetry in peripheral refraction with an aspheric myopia control contact lens.
        Biomed Opt Express. 2020; 11: 7376-7394https://doi.org/10.1364/BOE.406101
        • Nti A.N.
        • Ritchey E.R.
        • Berntsen D.A.
        Power profiles of centre-distance multifocal soft contact lenses.
        Ophthalmic Physiol Opt. 2021; 41: 393-400https://doi.org/10.1111/opo.12770
        • Bennett E.
        Contact lens correction of presbyopia.
        Clin Exp Optom. 2008; 91: 265-278https://doi.org/10.1111/j.1444-0938.2007.00242.x
        • Berntsen D.A.
        • Kramer C.E.
        Peripheral defocus with spherical and multifocal soft contact lenses.
        Optom Vis Sci. 2013; 90: 1215-1224https://doi.org/10.1097/OPX.0000000000000066
        • Plainis S.
        • Atchison D.A.
        • Charman W.N.
        Power profiles of multifocal contact lenses and their interpretation.
        Optom Vis Sci. 2013; 90: 1066-1077https://doi.org/10.1097/OPX.0000000000000030
        • Kim E.
        • Bakaraju R.C.
        • Ehrmann K.
        Power profiles of commercial multifocal soft contact lenses.
        Optom Vis Sci. 2016; 94: 183-196https://doi.org/10.1097/OPX.0000000000000998
        • Pérez-Prados R.
        • Piñero D.P.
        • Pérez-Cambrodí R.J.
        • Madrid-Costa D.
        Soft multifocal simultaneous image contact lenses: a review.
        Clin Exp Optom. 2017; 100: 107-127https://doi.org/10.1111/cxo.12488
        • Bradley A.
        • Nam J.
        • Xu R.
        • Harman L.
        • Thibos L.
        Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality.
        Ophthalmic Physiol Opt. 2014; 34: 331-345https://doi.org/10.1111/opo.12110
        • Kollbaum P.S.
        • Dietmeier B.M.
        • Jansen M.E.
        • Rickert M.E.
        Quantification of ghosting produced with presbyopic contact lens correction.
        Eye Contact Lens. 2012; 38: 252-259https://doi.org/10.1097/ICL.0b013e31825aa879
        • Kang P.
        • Wildsoet C.F.
        Acute and short-term changes in visual function with multifocal soft contact lens wear in young adults.
        Contact Lens Ant Eye. 2016; 39: 133-140https://doi.org/10.1016/j.clae.2015.09.004
        • Fedtke C.
        • Bakaraju R.C.
        • Ehrmann K.
        • Chung J.
        • Thomas V.
        • Holden B.A.
        Visual performance of single vision and multifocal contact lenses in non-presbyopic myopic eyes.
        Contact Lens Ant Eye. 2016; 39: 38-46
        • Kang P.
        • McAlinden C.
        • Wildsoet C.F.
        Effects of multifocal soft contact lenses used to slow myopia progression on quality of vision in young adults.
        Acta Ophthalmol. 2017; 95: e43-e53https://doi.org/10.1111/aos.13173
        • Sha J.
        • Tilia D.
        • Diec J.
        • Fedtke C.
        • Yeotikar N.
        • Jong M.
        • et al.
        Visual performance of myopia control soft contact lenses in non-presbyopic myopes.
        Clin Optom. 2018; 10: 75-86https://doi.org/10.2147/OPTO.S167297
        • Quaid P.
        • Simpson T.
        Association between reading speed, cycloplegic refractive error, and oculomotor function in reading disabled children versus controls.
        Graefes Arch Clin Exp Ophthalmol. 2013; 251: 169-187https://doi.org/10.1007/s00417-012-2135-0
        • Jainta S.
        • Blythe H.I.
        • Liversedge S.P.
        Binocular advantages in reading.
        Curr Biol. 2014; 24: 526-530https://doi.org/10.1016/j.cub.2014.01.014
        • Gwiazda J.
        • Thorn F.
        • Held R.
        Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children.
        Optom Vis Sci. 2005; 82: 273-278https://doi.org/10.1097/01.OPX.0000159363.07082.7D
        • Seidel D.
        • Gray L.S.
        • Heron G.
        Retinotopic accommodation responses in myopia.
        Invest. Ophthalmol Vis Sci. 2003; 44: 1035-1041https://doi.org/10.1167/iovs.02-0264
        • Abbott M.L.
        • Schmid K.L.
        • Strang N.C.
        Differences in the accommodation stimulus response curves of adult myopes and emmetropes.
        Ophthalmic Physiol Opt. 1998; 18: 13-20https://doi.org/10.1046/j.1475-1313.1998.97000720.x
        • Drobe B.
        • de Saint-Andre R.
        The pre-myopic syndrome.
        Ophthalmic Physiol Opt. 1995; 15: 375-378https://doi.org/10.1046/j.1475-1313.1995.9500075o.x
        • Nakatsuka C.
        • Hasebe S.
        • Nonaka F.
        • Ohtsuki H.
        Accommodative lag under habitual seeing conditions: comparison between myopic and emmetropic children.
        Jpn J Ophthalmol. 2005; 49: 189-194https://doi.org/10.1007/s10384-004-0175-7
        • Berntsen D.A.
        • Sinnott L.T.
        • Mutti D.O.
        • Zadnik K.
        Accommodative lag and juvenile-onset myopia progression in children wearing refractive correction.
        Vision Res. 2011; 51: 1039-1046https://doi.org/10.1016/j.visres.2011.02.016
        • Cheng D.
        • Schmid K.L.
        • Woo G.C.
        The effect of positive-lens addition and base-in prism on accommodation accuracy and near horizontal phoria in Chinese myopic children.
        Ophthalmic Physiol Opt. 2008; 28: 225-237https://doi.org/10.1111/j.1475-1313.2008.00560.x
        • Tarrant J.
        • Severson H.
        • Wildsoet C.F.
        Accommodation in emmetropic and myopic young adults wearing bifocal soft contact lenses.
        Ophthalmic Physiol Opt. 2008; 28: 62-72https://doi.org/10.1111/j.1475-1313.2007.00529.x
        • Gong C.R.
        • Troilo D.
        • Richdale K.
        Accommodation and phoria in children wearing multifocal contact lenses.
        Optom Vis Sci. 2017; 94: 353-360https://doi.org/10.1097/OPX.0000000000001044
        • Faria-Ribeiro M.
        • Amorim-de-Sousa A.
        • Gonzalez-Meijome J.M.
        Predicted accommodative response from image quality in young eyes fitted with different dual focus designs.
        Ophthalmic Physiol Opt. 2018; 38: 309-316https://doi.org/10.1111/opo.12443
        • Altoaimi H.B.
        • Almutairi M.S.
        • Kollbaum P.S.
        • Bradley A.
        Accommodative behavior of young eyes wearing multifocal contact lenses.
        Optom Vis Sci. 2018; 95: 416-427https://doi.org/10.1097/OPX.0000000000001214
        • Altoaimi B.H.
        • Kollbaum P.
        • Meyer D.
        • Bradley A.
        Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
        Ophthalmic Physiol Opt. 2018; 38: 152-163https://doi.org/10.1111/opo.12438
        • Gifford K.L.
        • Schmid K.L.
        • Collins J.
        • Maher C.
        • Makan R.
        • Nguyen T.K.P.
        • et al.
        Multifocal contact lens design, not addition power, affects accommodation responses in young adult myopes.
        Ophthalmic Physiol Opt. 2021; 41: 1346-1354https://doi.org/10.1111/opo.12892
        • Anstice N.
        • Phillips J.R.
        Effect of dual-focus soft contact lens wear on axial myopia progression in children.
        Ophthalmology. 2011; 118: 1152-1161https://doi.org/10.1016/j.ophtha.2010.10.035
        • Ruiz-Pomeda A.
        • Pérez-Sánchez B.
        • Cañadas P.
        • Prieto-Garrido F.L.
        • Gutiérrez-Ortega R.
        • Villa-Collar C.
        Binocular and accommodative function in the controlled randomized clinical trial MiSight® Assessment Study Spain (MASS).
        Graefes Arch Clin Exp Ophthalmol. 2019; 257: 207-215https://doi.org/10.1007/s00417-018-4115-5
        • Goss D.A.
        • Jackson T.W.
        Clinical findings before the onset of myopia in youth: 3. Heterophoria.
        Optom Vis Sci. 1996; 73: 269-278https://doi.org/10.1097/00006324-199604000-00009
        • Lee D.
        • Pang Y.
        • Patel R.
        • Patel M.
        A study of myopia progression in young adults.
        Invest Ophthalmol Vis Sci. 2008; 49 (ARVO abstract): 2608
        • Chung K.M.
        • Chong E.
        Near esophoria is associated with high myopia.
        Clin Exp Optom. 2000; 88: 71-75https://doi.org/10.1111/j.1444-0938.2000.tb04895.x
      1. Borish IM. Subjective Refraction. In Borish's Clinical Refraction. 2nd edition (editors: Benjamin WJ, Borish IM) St. Louis Mo. Butterworth Heinemann/Elsevier, 2006. eBook. ISBN: 9780750675246.

        • Ruiz-Alcocer J.
        Analysis of the power profile of a new soft contact lens for myopia progression.
        J Optom. 2016; 10: 266-268https://doi.org/10.1016/j.optom.2016.08.003
      2. Jones LW, Dumbleton K. Soft contact lens fitting. In: AJ Phillips, L Speedwell (Editors), Contact Lenses (5th edition), Butterworth-Heinemann/Elsevier, Edinburgh (2007), 223–240. ISBN: 9780750688185, 9780702035074.

        • Jaisankar D.
        • Leube A.
        • Gifford K.L.
        • Schmid K.L.
        • Atchison D.A.
        Effects of eye rotation and contact lens decentration on horizontal field peripheral refraction.
        Ophthalmic Physiol Opt. 2019; 39: 370-377https://doi.org/10.1111/opo.12641
        • Lovie-Kitchin J.E.
        Validity and reliability of visual acuity measurements.
        Ophthalmic Physiol Opt. 1988; 8: 363-370https://doi.org/10.1111/j.1475-1313.1988.tb01170.x
        • Bailey I.L.
        • Lovie-Kitchin J.E.
        Visual acuity testing. From the laboratory to the clinic.
        Vision Res. 2013; 90: 2-9https://doi.org/10.1016/j.visres.2013.05.004
        • Arditi A.
        Improving the design of the letter contrast sensitivity test.
        Invest Ophthalmol Vis Sci. 2005; 46: 2225-2229https://doi.org/10.1167/iovs.04-1198
        • Elliott D.B.
        • Sanderson K.
        • Conkey A.
        The reliability of the Pelli-Robson contrast sensitivity chart.
        Ophthalmic Physiol Opt. 1990; 10: 21-24
        • Antona B.
        • Barrio A.
        • Sanchez I.
        • Gonzalez E.
        • Gonzalez G.
        Intraexaminer repeatability and agreement in stereoacuity measurements made in young adults.
        Int J Ophthalmol. 2015; 8: 374-381https://doi.org/10.3980/j.issn.2222-3959.2015.02.29
        • Davies L.
        • Mallen E.
        • Wolffsohn J.
        • Gilmartin B.
        Clinical evaluation of the Shin-Nippon NVision-K 5001/Grand Seiko WR-5100K autorefractor.
        Optom Vis Sci. 2003; 80: 320-324
        • Tang W.C.
        • Tang Y.Y.
        • Lam C.S.
        How representative is the 'Representative Value' of refraction provided by the Shin-Nippon NVision-K 5001 autorefractor?.
        Ophthalmic Physiol Opt. 2014; 34: 89-93https://doi.org/10.1111/opo.12098
        • Locke L.C.
        • Somers W.
        A comparison study of dynamic retinoscopy techniques.
        Optom Vis Sci. 1989; 66: 540-544https://doi.org/10.1097/00006324-198908000-00009
        • Gallaway M.
        • Scheiman M.
        Assessment of accommodative facility using MEM retinoscopy.
        J Am Optom Assoc. 1990; 61: 36-39
        • McKenzie K.M.
        • Kerr S.R.
        • Rouse M.W.
        • Deland P.N.
        Study of accommodative facility testing reliability.
        Am J Optom Physiol Opt. 1987; 64: 186-194https://doi.org/10.1097/00006324-198703000-00005
        • Rouse M.W.
        • DeLand P.N.
        • Mozayani S.
        • Smith J.P.
        Binocular accommodative facility testing reliability.
        Optom Vis Sci. 1992; 69: 314-319https://doi.org/10.1097/00006324-199204000-00010
        • Howell E.R.
        The differential diagnosis of accommodation/convergence disorders.
        Behav Optom. 1991; 3: 20-26
        • Wong E.P.
        • Fricke T.R.
        • Dinardo C.
        Inter-examiner repeatability of a new, modified Prentice card compared with established phoria tests.
        Optom Vis Sci. 2002; 79: 370-375https://doi.org/10.1097/00006324-200206000-00010
        • Antona B.
        • Barrio A.
        • Barra F.
        • Gonzalez E.
        • Sanchez I.
        Repeatability and agreement in the measurement of horizontal fusional vergences.
        Ophthalmic Physiol Opt. 2008; 28: 475-491https://doi.org/10.1111/j.1475-1313.2008.00583.x
        • Goss D.A.
        • Becker E.
        Comparison of near fusional vergence ranges with rotary prism and with prism bars.
        Optometry. 2011; 82: 104-107https://doi.org/10.1016/j.optm.2010.09.011
        • Jackson J.H.
        • Arnoldi K.
        The gradient AC/A ratio: What's really normal?.
        Am Orthopt J. 2004; 54: 125-132https://doi.org/10.3368/aoj.54.1.125
        • Armstrong R.A.
        Statistical guidelines for the analysis of data obtained from one or both eyes.
        Ophthalmic Physiol Opt. 2013; 33: 7-14https://doi.org/10.1111/opo.12009
        • Odell N.V.
        • Hatt S.R.
        • Leske D.A.
        • Adams W.E.
        • Holmes J.M.
        The effect of induced monocular blur on measures of stereoacuity.
        J Am Assoc Pediatric Ophthal Strab. 2009; 13: 136-141https://doi.org/10.1016/j.jaapos.2008.09.005
        • Cheng X.
        • Xu J.
        • Brennan N.A.
        Accommodation and its role in myopia progression and control with soft contact lenses.
        Ophthalmic Physiol Opt. 2019; 39: 162-171https://doi.org/10.1111/opo.12614
        • Fedtke C.
        • Sha J.
        • Thomas V.
        • Ehrmann K.
        • Bakaraju R.
        Impact of spherical aberration terms on multifocal contact lens performance.
        Optom Vis Sci. 2017; 94: 197-207https://doi.org/10.1097/OPX.0000000000001017
        • Schmid K.L.
        • Iskander D.R.
        • Li R.W.H.
        • Edwards M.H.E.
        • Flew J.K.
        Blur detection thresholds in childhood myopia: single and dual target presentation.
        Vision Res. 2002; 42: 239-247https://doi.org/10.1016/S0042-6989(01)00277-2
        • Labhishetty V.
        • Chakraborty A.
        • Bobier W.R.
        Is blur sensitivity altered in children with progressive myopia?.
        Vision Res. 2019; 154: 142-153https://doi.org/10.1016/j.visres.2018.11.002
        • Schulle K.L.
        • Berntsen D.A.
        • Sinnott L.T.
        • Bickle K.M.
        • Gostovic A.T.
        • Pierce G.E.
        • et al.
        Bifocal lenses in nearsighted kids (BLINK) study group. Visual acuity and over-refraction in myopic children fitted with soft multifocal contact lenses.
        Optom Vis Sci. 2018; 95: 292-298