OCT applications in contact lens fitting

Published:November 16, 2021DOI:https://doi.org/10.1016/j.clae.2021.101540


      • The OCT technology provides an important information for contact lens fitting.
      • The edge shape and lens thickness are lens parameters analyzed by the OCT.
      • Vault under the lens or corneal changes are other parameters analyzed by the OCT.


      Optical Coherence Tomography (OCT) is a noninvasive, high-speed, high-resolution imaging technology based in the Michaelson interferometry. A near-infrared light beam is used to register the intensity variations for the light backscattered on each sample layer. Due to the high repeatability on corneal measurements, spectral domain OCT (SD-OCT) is the gold standard when talking about in vivo, non-invasive anterior segment imaging. Changes in the morphology of various ocular surfaces such as the cornea, conjunctiva, limbus or tear film with soft (SCL), rigid, corneal or scleral lens (SL) wear can be described by OCT measurements. For instance, evaluation of the corneoscleral region is essential on SL fitting. For orthokeratology lenses central epithelial thinning and peripheral thickening and their regression could be quantified with OCT after Ortho-K lens wear. Blood vessel compression on the landing zone as well as vault thickness and fluid reservoir (FR) turbidity could be imaged with OCT. Tear film evaluation on contact lens wearers is essential because its use could lead to variations on the biochemical components in tears. Changes in tear meniscus dynamics and several parameters such as volume (TMV), tear meniscus height (HMT) and turbidity could be determined with OCT and positively correlated with the instillation of different ophthalmic solutions with Non-Invasive Break Up Time (NIBUT) and Schirmer test values. This manuscript shows the increasing applicability of OCT technology for the in vivo characterization of contact lens fitting and interaction with the ocular surface in a faster, safer and non-invasive way. Future research will still allow exploring OCT imaging to its full potential in contact lens practice, as there is still a significant amount of information contained in the images that are not yet easy to extract, analyze and give clinical value.


      To read this article in full you will need to make a payment


      1. Alfonso Sánchez JL, Lisa-Fernández C, Montés-Micó R, “Capítulo 42. Importancia de la OCT en el Implante y Seguimiento de las Lentes Intraoculares Fáquicas,” in Métodos Diagnósticos en Segmento Anterior, 1a ed., A. Castillo Gómez, Ed. Madrid, España: Sociedad Española de Cirugía Implanto-Refractiva, 2011, pp. 461–468.

        • Tomlins P.H.
        • Wang R.K.
        Theory, developments and applications of optical coherence tomography.
        J Phys D Appl Phys. 2005; 38: 2519-2535https://doi.org/10.1088/0022-3727/38/15/002
        • Huang D.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181https://doi.org/10.1002/ccd.23385
        • Maldonado M.J.
        • Ruiz-Oblitas L.
        • Munuera J.M.
        • Aliseda D.
        • García-Layana A.
        • Moreno-Montañés J.
        Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism.
        Am Acad Ophthalmol. 2000; 107: 81-87https://doi.org/10.1016/S0161-6420(99)00022-6
        • Singh S.R.
        • Lupidi M.
        • Mishra S.B.
        • Paez-Escamilla M.
        • Querques G.
        • Chhablani J.
        Unique optical coherence tomographic features in age-related macular degeneration.
        Surv Ophthalmol. 2020; 65: 451-457https://doi.org/10.1016/j.survophthal.2020.01.001
        • Nouri-Mahdavi K.
        • Weiss R.E.
        Detection of glaucoma deterioration in the macular region with optical coherence tomography: challenges and solutions.
        Am J Ophthalmol. 2021; 222: 277-284https://doi.org/10.1016/j.ajo.2020.09.026
        • Nkrumah G.
        • et al.
        Biomarkers for central serous chorioretinopathy.
        Ther Adv Ophthalmol. 2020; 12: 1-14https://doi.org/10.1177/https
        • Drexler W.
        • Liu M.
        • Kumar A.
        • Kamali T.
        • Unterhuber A.
        • Leitgeb R.A.
        Optical coherence tomography today: speed, contrast, and multimodality.
        J Biomed Opt. 2014; 19: 071412https://doi.org/10.1117/1.JBO.19.7.071412
        • Brezinski M.E.
        Optical Coherence Tomography: Principles and Applications.
        Elsevier, London, United Kingdom2006
        • Gurrea-Cintrano M.
        • Martín-Justicia A.
        Capítulo 37. Principios para la Interpretación de las Imágenes de OCT.
        in: Métodos Diagnósticos en Segmento Anterior. 1a ed. Sociedad Española de Cirugía Implanto-Refractiva, Madrid, España2011: 423-427
        • Schippling S.
        Basic principles of optical coherence tomography.
        Opt Coherence Tomogr Neurol Dis. 2015; : 4-13https://doi.org/10.1017/cbo9781139649506.003
        • Drexler W.
        • Fujimoto J.G.
        Optical coherence tomography: technology and applications.
        1a ed. Springer Science & Business Media, London, United Kingdom2008
        • Nassif N.
        • Cense B.
        • Hyle Park B.
        • Yun S.H.
        • Chen T.C.
        • Bouma B.E.
        • et al.
        In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography.
        Opt Lett. 2004; 29: 480https://doi.org/10.1364/OL.29.000480
        • Nassif N.A.
        • Cense B.
        • Park B.H.
        • Pierce M.C.
        • Yun S.H.
        • Bouma B.E.
        • et al.
        In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve.
        Opt Express. 2004; 12: 367https://doi.org/10.1364/OPEX.12.000367
        • Potsaid B.
        • Gorczynska I.
        • Srinivasan V.J.
        • Chen Y.
        • Cable A.
        • Fujimoto J.G.
        Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second.
        Opt Express. 2008; 16: 15149-15169
        • Chinn S.R.
        • Swanson E.A.
        • Fujimoto J.G.
        Optical coherence tomography using a frequency-tunable optical source.
        Opt Lett. 1997; 22: 340https://doi.org/10.1364/ol.22.000340
        • Lee E.C.W.
        • de Boer J.F.
        • Mujat M.
        • Lim H.
        • Yun S.H.
        In vivo optical frequency domain imaging of human retina and choroid.
        Opt Express. 2006; 14: 4403https://doi.org/10.1364/OE.14.004403
        • Choma M.
        • Sarunic M.
        • Yang C.
        • Izatt J.
        Sensitivity advantage of swept source and Fourier domain optical coherence tomography.
        Opt Express. 2003; 11: 2183https://doi.org/10.1364/oe.11.002183
        • Wojtkowski M.
        • Srinivasan V.J.
        • Ko T.H.
        • Fujimoto J.G.
        • Kowalczyk A.
        • Duker J.S.
        Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.
        Opt Express. 2004; 12: 2404
        • Huang D.
        • Li Y.
        • Tang M.
        Chapter 31. Anterior eye imaging with optical coherence tomography.
        in: Optical Coherence Tomography: Technology and Applications, Second Edition. 2a ed. Springer Science & Business Media, London, United Kingdom2015: 1649-1683
        • Jack Ma X.
        • Wang L.
        • Koch D.D.
        Repeatability of corneal epithelial thickness measurements using Fourier-Domain Optical Coherence Tomography in normal and Post-LASIK eyes.
        Cornea. 2013; 32: 1544-1548https://doi.org/10.1038/jid.2014.371
        • Güel-Villanueva J.L.
        • Elies-Amat D.
        • Selinas C.
        • Manero F.
        • Gris Ó.
        • Morral M.
        Capítulo 38. Estudio Patología Corneal con OCT.
        in: Métodos Diagnósticos en Segmento Anterior. 1a ed. Sociedad Española de Cirugía Implanto-Refractiva, Madrid, España2011: 430-435
        • Wylegała E.
        • Teper S.
        • Nowińska A.K.
        • Milka M.
        • Dobrowolski D.
        Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography.
        J Cataract Refract Surg. 2009; 35: 1410-1414https://doi.org/10.1016/j.jcrs.2009.03.034
      2. Shen F, Wang MR, Wang J, Yuan Y, Chen, Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography, Eye Contact Lens, vol. 23, no. 1, pp. 1–7, 2008, doi: 10.1038/jid.2014.371.

        • Young G.
        • Schnider C.
        • Hunt C.
        • Efron S.
        Corneal topography and soft contact lens fit.
        Optom Vis Sci. 2010; 87: 358-366https://doi.org/10.1097/OPX.0b013e3181d9519b
        • Hall L.A.
        • Young G.
        • Wolffsohn J.S.
        • Riley C.
        The influence of corneoscleral topography on soft contact lens fit.
        Investig Ophthalmol Vis Sci. 2011; 52: 6801-6806https://doi.org/10.1167/iovs.11-7177
        • Cui L.
        • Shen M.
        • Wang M.R.
        • Wang J.
        Micrometer scale contact lens movements imaged by ultra-high resolution optical coherence tomography.
        Am J Ophthalmol. 2012; 23: 1-7https://doi.org/10.1038/jid.2014.371
        • Cui L.
        • Li M.
        • Shen M.
        • Lu F.
        • Wang J.
        Characterization of soft contact lens fitting using ultra-long scan depth optical coherence tomography.
        J Ophthalmol. 2017; 2017: 1-13https://doi.org/10.1155/2017/5763172
        • González-Méijome J.M.
        • Cerviño A.
        • Peixoto-De-Matos S.C.
        • Madrid-Costa D.
        • Jorge J.
        • Ferrer-Blasco T.
        ‘In Situ’ corneal and contact lens thickness changes with high-resolution optical coherence tomography.
        Cornea. 2012; 31: 633-638https://doi.org/10.1097/ICO.0b013e31823f0905
        • Gonzalez-Meijome J.M.
        • Cerviño A.
        • Carracedo G.
        • Queiros A.
        • Garcia-Lázaro S.
        • Ferrer-Blasco T.
        High-resolution spectral domain optical coherence tomography technology for the visualization of contact lens to cornea relationships.
        Cornea. 2010; 29: 1359-1367https://doi.org/10.1097/ICO.0b013e3181d25ce2
        • Martin R.
        • De Juan V.
        • Rodríguez G.
        • Cuadrado R.
        • Fernandez I.
        Measurement of corneal swelling variations without removal of the contact lens during extended wear.
        Investig Ophthalmol Vis Sci. 2007; 48: 3043-3050https://doi.org/10.1167/iovs.06-1372
        • Ruiz-Alcocer J.
        • Monsálvez-Romín D.
        • García-Lázaro S.
        • Albarrán-Diego C.
        • Hernández-Verdejo J.L.
        • Madrid-Costa D.
        Impact of contact lens material and design on the ocular surface.
        Clin Exp Optom. 2018; 101: 188-192https://doi.org/10.1111/cxo.12622
        • Wang J.
        • Fonn D.
        • Simpson T.L.
        • Jones L.
        The measurement of corneal epithelial thickness in response to hypoxia using optical coherence tomography.
        Am J Ophthalmol. 2002; 133: 315-319https://doi.org/10.1016/S0002-9394(01)01382-4
        • Lu F.
        • Tao A.
        • Tao W.
        • Zhuang X.
        • Shen M.
        Thickness changes in the corneal epithelium and Bowman’s layer after overnight wear of silicone hydrogel contact lenses.
        BMC Ophthalmol. 2018; 18: 1-7https://doi.org/10.1186/s12886-018-0956-2
        • Fonn D.
        • Du Toit R.
        • Simpson T.L.
        • Vega J.A.
        • Situ P.
        • Chalmers R.L.
        Sympathetic swelling response of the control eye to soft lenses in the other eye.
        Investig Ophthalmol Vis Sci. 1999; 40: 3116-3121
        • Turhan S.A.
        • Yigit D.D.
        • Toker E.
        Corneal epithelial thickness and corneal curvature changes during the day: the effects of daily disposable contact lens wear.
        Contact Lens Anterior Eye. 2020; 43: 389-394https://doi.org/10.1016/j.clae.2019.11.017
        • Hong J.
        • et al.
        Corneal epithelial thickness map in long-therm soft contact lenses wearers.
        Optom Vis Sci. 2014; 91: 1455-1461
        • Ersan I.
        • Arikan S.
        • Kara S.
        • Gencer B.
        • Koklu A.
        • Tufan H.A.
        Non-invasive assessment of corneal and conjunctival deterioration in soft contact lens users using anterior segment optical coherence tomography.
        Clin. Exp. Optom. 2016; 99: 564-567https://doi.org/10.1111/cxo.12363
        • Pérez J.G.
        • Méijome J.M.G.
        • Jalbert I.
        • Sweeney D.F.
        • Erickson P.
        Corneal epithelial thinning profile induced by long-term wear of hydrogel lenses.
        Cornea. 2003; 22: 304-307https://doi.org/10.1097/00003226-200305000-00005
        • Lei Y.
        • Zheng X.
        • Hou J.
        • Xu B.
        • Mu G.
        Effects of long-term soft contact lens wear on the corneal thickness and corneal epithelial thickness of myopic subjects.
        Mol Med Rep. 2015; 11: 2020-2026https://doi.org/10.3892/mmr.2014.2964
        • Cui L.
        • et al.
        Characterization of soft contact lens edge fitting during daily wear using ultrahigh-resolution optical coherence tomography.
        J Ophthalmol. 2018; 2018: 1-6https://doi.org/10.1155/2018/3463595
        • Shen M.
        • Cui L.
        • Riley C.
        • Wang M.R.
        • Wang J.H.
        Characterization of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography.
        Investig Ophthalmol Vis Sci. 2011; 52: 4091-4097https://doi.org/10.1167/iovs.10-6507
        • Tapasztó B.
        • Veres A.
        • Kosina-Hagyó K.
        • Somfai G.M.
        • Németh J.
        OCT imaging of lid-parallel conjunctival folds in soft contact lens wearers.
        Optom Vis Sci. 2011; 88: 1206-1213https://doi.org/10.1097/OPX.0b013e3182274e8f
        • Alonso-Caneiro D.
        • Shaw A.J.
        • Collins M.J.
        Using optical coherence tomography to assess corneoscleral morphology after soft contact lens wear.
        Optom Vis Sci. 2012; 89: 1619-1626
        • Consejo A.
        • Bartuzel M.M.
        • Iskander D.R.
        Corneo-scleral limbal changes following short-term soft contact lens wear.
        Contact Lens Anterior Eye. 2017; 40: 293-300https://doi.org/10.1016/j.clae.2017.04.007
        • Kaluzny B.
        • Fojt W.
        • Szkulmowska A.
        • Bajraszewsky T.
        • Wojtkowski M.
        • Kowalczyk A.
        Spectral optical coherence tomography in video-rate and 3d imaging of contact lens wear.
        Optom Vis Sci. 2007; 84: 1104-1109https://doi.org/10.17925/eor.2007.00.00.23
        • Wang J.
        • Fonn D.
        • Simpson T.L.
        • Sorbara L.
        • Kort R.
        • Jones L.
        Topographical thickness of the epithelium and total cornea after overnight wear of reverse-geometry rigid contact lenses for myopia reduction.
        Investig Ophthalmol Vis Sci. 2003; 44: 4742-4746https://doi.org/10.1167/iovs.03-0239
        • Gemoules G.
        A novel method of fitting scleral lenses using high resolution optical coherence tomography.
        Eye Contact Lens. 2008; 34: 80-83https://doi.org/10.1097/ICL.0b013e318166394d
        • Romero-Jiménez M.
        • Flores-Rodríguez P.
        Utility of a semi-scleral contact lens design in the management of the irregular cornea.
        Contact Lens Anterior Eye. 2013; 36: 146-150https://doi.org/10.1016/j.clae.2012.12.006
        • Tom L.M.
        • Jacobs D.S.
        Advances in anterior segment OCT for the design and fit of scleral lenses.
        Int Ophthalmol Clin. 2019; 59: 31-40https://doi.org/10.1097/IIO.0000000000000284
        • Schornack M.M.
        • Patel S.V.
        Relationship between corneal topographic indices and scleral lens base curve.
        Eye Contact Lens. 2010; 36: 330-333https://doi.org/10.1097/ICL.0b013e3181eb8418
        • Bandlitz S.
        • Bäumer J.
        • Conrad U.
        • Wolffsohn J.
        Scleral topography analysed by optical coherence tomography.
        Contact Lens Anterior Eye. 2017; 40: 242-247https://doi.org/10.1016/j.clae.2017.04.006
        • Gimenez-Sanchis I.
        • Palacios-Carmen B.
        • García-Garrigós A.
        • Cantó-Vañó J.
        • Pérez-Ortega A.J.
        • Piñero D.P.
        Anterior segment optical coherence tomography angiography to evaluate the peripheral fitting of scleral contact lenses.
        Clin Optom. 2018; 10: 103-108https://doi.org/10.2147/OPTO.S164454
        • Otchere H.
        • Jones L.
        • Sorbara L.
        The impact of scleral contact lens vault on visual acuity and comfort.
        Eye Contact Lens. 2018; 44: S54-S59https://doi.org/10.1097/ICL.0000000000000427
        • Michaud L.
        • van der Worp E.
        • Brazeau D.
        • Warde R.
        • Giasson C.J.
        Predicting estimates of oxygen transmissibility for scleral lenses.
        Contact Lens Anterior Eye. 2012; 35: 266-271https://doi.org/10.1016/j.clae.2012.07.004
        • Yeung D.
        • Sorbara L.
        Scleral lens clearance assessment with biomicroscopy and anterior segment optical coherence tomography.
        Optom Vis Sci. 2018; 95: 13-20https://doi.org/10.1097/OPX.0000000000001164
        • Esen F.
        • Toker E.
        Influence of apical clearance on mini-scleral lens settling, clinical performance, and corneal thickness changes.
        Eye Contact Lens. 2017; 43: 230-235https://doi.org/10.1097/ICL.0000000000000266
        • Rathi V.M.
        • Mandathara P.S.
        • Dumpati S.
        • Sangwan V.S.
        Change in vault during scleral lens trials assessed with anterior segment optical coherence tomography.
        Contact Lens Anterior Eye. 2017; 40: 157-161https://doi.org/10.1016/j.clae.2017.03.008
        • Kauffman M.J.
        • Gilmartin C.A.
        • Bennett E.S.
        • Bassi C.J.
        A comparison of the short-term settling of three scleral lens designs.
        Optom Vis Sci. 2014; 91: 1462-1466https://doi.org/10.1097/OPX.0000000000000409
        • Courey C.
        • Michaud L.
        Variation of clearance considering viscosity of the solution used in the reservoir and following scleral lens wear over time.
        Cont Lens Anterior Eye. 2017; 40: 260-266https://doi.org/10.1016/j.clae.2017.03.003
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        The temporal dynamics of miniscleral contact lenses: central corneal clearance and centration.
        Cont Lens Anterior Eye. 2018; 41: 162-168https://doi.org/10.1016/j.clae.2017.07.002
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        Corneal changes following short-term miniscleral contact lens wear.
        Cont Lens Anterior Eye. 2014; 37: 461-468https://doi.org/10.1016/j.clae.2014.08.002
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Collins M.J.
        Morphological changes in the conjunctiva, episclera and sclera following short-term miniscleral contact lens wear in rigid lens neophytes.
        Cont Lens Anterior Eye. 2016; 39: 53-61https://doi.org/10.1016/j.clae.2015.06.008
        • Kim Y.H.
        • Tan B.
        • Lin M.C.
        • Radke C.J.
        Central corneal edema with scleral-lens wear.
        Curr Eye Res. 2018; 43: 1305-1315https://doi.org/10.1080/02713683.2018.1500610
        • Tan B.
        • Zhou Y.
        • Yuen T.L.
        • Lin K.
        • Michaud L.
        • Lin M.C.
        Effects of scleral-lens tear clearance on corneal edema and post-lens tear dynamics: a pilot study.
        Optom Vis Sci. 2018; 95: 481-490https://doi.org/10.1097/OPX.0000000000001220
        • Carracedo G.
        • Serramito-Blanco M.
        • Martin-Gil A.
        • Wang Z.
        • Rodriguez-Pomar C.
        • Pintor J.
        Post-lens tear turbidity and visual quality after scleral lens wear.
        Clin Exp Optom. 2017; 100: 577-582https://doi.org/10.1111/cxo.12512
        • Haque S.
        • Fonn D.
        • Simpson T.
        • Jones L.
        Corneal and epithelial thickness changes after 4 weeks of overnight corneal refractive therapy lens wear, measured with optical coherence tomography.
        Eye Contact Lens. 2004; 30: 189-193https://doi.org/10.1097/01.ICL.0000140223.60892.16
        • Haque S.
        • Fonn D.
        • Moptom D.
        Corneal refractive therapy with different lens materials, Part 1: Corneal, stromal, and epithelial thickness changes.
        Optom Vis Sci. 2007; 84: 343-348
        • Lu F.
        • Simpson T.
        • Sorbara L.
        • Fonn D.
        Corneal refractive therapy with different lens materials, Part 2: Effect of oxygen transmissibility on corneal shape and optical characteristics.
        Optom Vis Sci. 2007; 84: 349-356https://doi.org/10.1097/OPX.0b013e3180437e6e
        • Lian Y.
        • et al.
        Vertical and horizontal thickness profiles of the corneal epithelium and Bowman’s layer after orthokeratology.
        Investig Ophthalmol Vis Sci. 2013; 54: 691https://doi.org/10.1167/iovs.12-10263
        • Cho P.
        • Cheung S.W.
        Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial.
        Investig Ophthalmol Vis Sci. 2012; 53: 7077-7085https://doi.org/10.1167/iovs.12-10565
        • Qian Y.
        • Xue F.
        • Huang J.
        • Qu X.
        • Zhou X.
        • Van Lanen-Wanek D.
        Pachymetry map of corneal epithelium in children wearing orthokeratology contact lenses.
        Curr Eye Res. 2014; 39: 263-270https://doi.org/10.3109/02713683.2013.841259
        • Rabinowitz Y.S.
        Surv Ophthalmol. 1998; 42: 297-319https://doi.org/10.1016/S0039-6257(97)00119-7
        • Downie L.E.
        • Lindsay R.G.
        Contact lens management of keratoconus.
        Clin Exp Optom. 2015; 98: 299-311https://doi.org/10.1111/cxo.12300
        • Haque S.
        • Simpson T.L.
        • Jones L.
        Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, orbscan II, and optical coherence tomography.
        J Refract Surg. 2006; 22: 486-493
        • Elbendary A.M.
        • Abou Samra W.
        Evaluation of rigid gas permeable lens fitting in keratoconic patients with optical coherence tomography.
        Graefe’s Arch Clin Exp Ophthalmol. 2013; 251: 1565-1570https://doi.org/10.1007/s00417-013-2271-1
        • Singh K.
        • Bhattacharyya M.
        • Arora R.
        • Dangda S.
        • Mutreja A.
        Alterations in contact lens fitting parameters following cross-linking in keratoconus patients of Indian ethnicity.
        Int Ophthalmol. 2018; 38: 1521-1530https://doi.org/10.1007/s10792-017-0615-2
        • Wang J.
        • Fonn D.
        • Simpson T.L.
        • Jones L.
        Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography.
        Investig Ophthalmol Vis Sci. 2003; 44: 2524-2528https://doi.org/10.1167/iovs.02-0731
        • Wang J.
        • Jiao S.
        • Ruggeri M.
        • Shousha M.A.
        • Chen Q.
        In situ visualization of tears on contact lens using ultra high resolution optical coherence tomography.
        Eye Contact Lens. 2009; 35: 44-49https://doi.org/10.1097/ICL.0b013e31819579f2
        • Mann A.
        • Tighe B.
        Contact lens interactions with the tear film.
        Exp Eye Res. 2013; 117: 88-98https://doi.org/10.1016/j.exer.2013.07.013
        • Shen M.
        • et al.
        Upper and lower tear menisci in the diagnosis of dry eye.
        Investig Ophthalmol Vis Sci. 2009; 50: 2722https://doi.org/10.1167/iovs.08-2704
        • Chen Q.
        • et al.
        Lower volumes of tear menisci in contact lens wearers with dry eye symptoms.
        Investig Ophthalmol Vis Sci. 2009; 50: 3159https://doi.org/10.1167/iovs.08-2794
      3. Tao A, et al., Tear menisci after overnight contact lens wear, Optom Vis Sci, vol. 88, no. 12, pp. 1433–1438, 2011, doi: 10.1097/OPX.0b013e3182303631.

        • Carracedo G.
        • Pastrana C.
        • Serramito M.
        • Rodriguez-Pomar C.
        Evaluation of tear meniscus by optical coherence tomography after different sodium hyaluronate eyedrops instillation.
        Acta Ophthalmol. 2019; 97: e162-e169https://doi.org/10.1111/aos.13887
        • Wang J.
        • Cox I.
        • Reindel W.T.
        Upper and lower tear menisci on contact lenses.
        Investig Ophthalmol Vis Sci. 2009; 50: 1106-1111https://doi.org/10.1167/iovs.08-2458
        • Del Águila-Carrasco A.J.
        • Ferrer-Blasco T.
        • García-Lázaro S.
        • Esteve-Taboada J.J.
        • Montés-Micó R.
        Assessment of corneal thickness and tear meniscus during contact-lens wear.
        Contact Lens Anterior Eye. 2015; 38: 185-193https://doi.org/10.1016/j.clae.2015.01.010
        • Nagahara Y.
        • Koh S.
        • Maeda N.
        • Nishida K.
        • Watanabe H.
        Prominent decrease of tear meniscus height with contact lens wear and efficacy of eye drop instillation.
        Eye Contact Lens. 2015; 41: 318-322https://doi.org/10.1097/ICL.0000000000000134
        • Chen Q.
        • et al.
        Tear menisci and ocular discomfort during daily contact lens wear in symptomatic wearers.
        Investig Ophthalmol Vis Sci. 2011; 52: 2175https://doi.org/10.1167/iovs.10-5780
        • Garcia-Lázaro S.
        • Madrid-Costa D.
        • Ferrer-Blasco T.
        • Montés-Micó R.
        • Cerviño A.
        OCT for assessing artificial tears effectiveness in contact lens wearers.
        Optom Vis Sci. 2012; 89: 62-69https://doi.org/10.1097/OPX.0b013e318237a9d2
        • Chen Q.
        • Wang J.
        • Tao A.
        • Shen M.
        • Jiao S.
        • Lu F.
        Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses.
        Investig Ophthalmol Vis Sci. 2010; 51: 1988-1993https://doi.org/10.1167/iovs.09-4389
        • Johnson M.E.
        • Murphy P.J.
        The agreement and repeatability of tear meniscus height measurement methods.
        Optom Vis Sci. 2005; 82: 1030-1037https://doi.org/10.1097/01.opx.0000192352.78935.e0
        • Santodomingo-Rubido J.
        • Wolffsohn J.S.
        • Gilmartin B.
        Comparison between graticule and image capture assessment of lower tear film meniscus height.
        Contact Lens Anterior Eye. 2006; 29: 169-173https://doi.org/10.1016/j.clae.2006.05.004