Vision-related quality of life with myopia management: A review

  • Michael J. Lipson
    Correspondence
    Corresponding author at: 4257 Ascott Ln. Commerce Twp, MI 48390, United States.
    Affiliations
    Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center (Retired), Independent Consultant, United States
    Search for articles by this author
  • Brittany Boland
    Affiliations
    Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, United States
    Search for articles by this author
  • Colm McAlinden
    Affiliations
    Department of Ophthalmology, Singleton Hospital, Swansea University Health Board, Swansea, UK

    Department of Ophthalmology, Royal Gwent Hospital, Aneurin Bevan University Health Board, Newport, UK

    Wenzhou Medical University, Wenzhou, China

    Eye & ENT Hospital of Fudan University, Shanghai, China
    Search for articles by this author
Published:November 18, 2021DOI:https://doi.org/10.1016/j.clae.2021.101538

      Abstract

      The disease of myopia has come into focus as a worldwide public health concern. Myopia has shown increasing prevalence, incidence at earlier age and progression to a higher degree. Progressive increase in degree of myopia is strongly associated with increase in axial length of the eye. Various interventions have been shown to slow axial elongation in children. These interventions have been studied to assess efficacy in slowing axial elongation and correction of vision. In addition, research into quality of vision, risk of adverse events, overall safety and impact on vision-related quality (VR-QoL) of life has been pursued. In contrast, studies have been published to demonstrate the risks of myopia, high myopia and increased axial length. This review will discuss VR-QoL assessment on the most effective and most commonly prescribed interventions to slow axial elongation and myopia progression. The patient attributes considered are VR-QoL scores from validated instruments. The development and use of validated survey instruments to assess the patient-reported outcomes is discussed. The review demonstrates that there are numerous factors that may impact VR-QoL to evaluate in the decision-making process when eye care providers consider when, how and if to prescribe myopia management (MM) for children with myopia.

      Keywords

      To read this article in full you will need to make a payment

      References

      1. The impact of myopia and high myopia. Report of the Joint World Health Organization–Brien Holden Vision Institute Global Scientific Meeting on Myopia. University of New South Wales, Sydney, Australia, March 16-18, 2015. Geneva: World Health Organization; 2017. License: CC BY-NC-SA 3.0 IGO.https://www.who.int/blindness/causes/MyopiaReportforWeb.pdf?ua=1 Accessed January 11, 2021.

        • Modjtahedi B.S.
        • Ferris 3rd, F.L.
        • Hunter D.G.
        • Fong D.S.
        Public health burden and potential interventions for myopia.
        Ophthalmology. 2018; 125: 628-630https://doi.org/10.1016/j.ophtha.2018.01.033
        • Flitcroft D.I.
        The complex interactions of retinal, optical and environmental factors in myopia aetiology.
        Prog Retin Eye Res. 2012; 31: 622-660https://doi.org/10.1016/j.preteyeres.2012.06.004
        • Morgan P.B.
        • Efron N.
        • Woods C.A.
        • Santodomingo-Rubido J.
        International contact lens prescribing survey C. International survey of orthokeratology contact lens fitting.
        Cont Lens Anterior Eye. 2019; 42: 450-454https://doi.org/10.1016/j.clae.2018.11.005
        • Wolffsohn J.S.
        • Calossi A.
        • Cho P.
        • Gifford K.
        • Jones L.
        • Jones D.
        • et al.
        Global trends in myopia management attitudes and strategies in clinical practice – 2019 Update.
        Cont Lens Anterior Eye. 2020; 43: 9-17https://doi.org/10.1016/j.clae.2019.11.002
        • Bullimore M.A.
        • Richdale K.
        Myopia Control 2020: where are we and where are we heading?.
        Ophthalmic Physiol Opt. 2020; 40: 254-270https://doi.org/10.1111/opo.v40.310.1111/opo.12686
        • Wildsoet C.F.
        • Chia A.
        • Cho P.
        • Guggenheim J.A.
        • Polling J.R.
        • Read S.
        • et al.
        IMI – interventions myopia institute: interventions for controlling myopia onset and progression report.
        Invest Ophthalmol Vis Sci. 2019; 60: M106-M131https://doi.org/10.1167/iovs.18-25958
        • Huang J.
        • Wen D.
        • Wang Q.
        • McAlinden C.
        • Flitcroft I.
        • Chen H.
        • et al.
        Efficacy comparison of 16 interventions for myopia control in children: a network meta-analysis.
        Ophthalmology. 2016; 123: 697-708https://doi.org/10.1016/j.ophtha.2015.11.010
        • Efron N.
        • Morgan P.B.
        • Woods C.A.
        • Santodomingo-Rubido J.
        • Nichols J.J.
        International contact lens prescribing survey C. International survey of contact lens fitting for myopia control in children.
        Cont Lens Anterior Eye. 2020; 43: 4-8https://doi.org/10.1016/j.clae.2019.06.008
        • Chamberlain P.
        • Peixoto-de-Matos S.C.
        • Logan N.S.
        • Ngo C.
        • Jones D.
        • Young G.
        A 3-year randomized clinical trial of MiSight lenses for myopia control.
        Optom Vis Sci. 2019; 96: 556-567https://doi.org/10.1097/OPX.0000000000001410
      2. Review of Myopia Management. May 12,2021. https://reviewofmm.com/johnson-johnson-visions-acuvue-abiliti-orthok-receives-fda-approval/.

        • Walt J.G.
        • Rowe M.M.
        • Stern K.L.
        Evaluating the functional impact of dry eye: the ocular surface disease index.
        Drug Inf J. 1997; 31: 1436
        • McAlinden C.
        • Pesudovs K.
        • Moore J.E.
        The development of an instrument to measure quality of vision: the Quality of Vision (QoV) questionnaire.
        Invest Ophthalmol Vis Sci. 2010; 51: 5537-5545https://doi.org/10.1167/iovs.10-5341
        • Hays R.D.
        • Mangione C.M.
        • Ellwein L.
        • Lindblad A.S.
        • Spritzer K.L.
        • McDonnell P.J.
        Psychometric properties of the National Eye Institute-Refractive Error Quality of Life instrument.
        Ophthalmology. 2003; 110: 2292-2301https://doi.org/10.1016/j.ophtha.2002.07.001
        • McAlinden C.
        • Lipson M.
        Orthokeratology and contact lens quality of life questionnaire (OCL-QoL).
        Eye Contact Lens. 2018; 44: 279-285https://doi.org/10.1097/ICL.0000000000000451
        • Jones L.
        • Drobe B.
        • González-Méijome J.M.
        • Gray L.
        • Kratzer T.
        • Newman S.
        • et al.
        IMI - industry guidelines and ethical considerations for myopia control report.
        Invest Ophthalmol Vis Sci. 2019; 60: M161https://doi.org/10.1167/iovs.18-25963
        • Terry R.L.
        Eyeglasses and gender stereotypes.
        Optom Vis Sci. 1989; 66: 694-697
        • Terry R.L.
        Social and personality effects of vision correctives.
        J Soc Behav Personality. 1990; 5: 683-696
        • Terry R.L.
        • Berg A.J.
        • Phillips P.E.
        The effect of eyeglasses on self-esteem.
        J Am Optom Assoc. 1983; 54: 947-949
        • Chen C.Y.
        • Keeffe J.E.
        • Garoufalis P.
        • Islam F.M.A.
        • Dirani M.
        • Couper T.A.
        • et al.
        Vision-related quality of life comparison for emmetropes, myopes after refractive surgery, and myopes wearing spectacles or contact lenses.
        J Refract Surg. 2007; 23: 752-759
        • Khadka J.
        • McAlinden C.
        • Pesudovs K.
        Quality assessment of ophthalmic questionnaires: review and recommendations.
        Optom Vis Sci. 2013; 90: 720-744https://doi.org/10.1097/OPX.0000000000000001
        • McAlinden C.
        The importance of doctor-patient communication.
        Br J Hosp Med (Lond). 2014; 75: 64-65https://doi.org/10.12968/hmed.2014.75.2.64
        • Johnson M.E.
        • Murphy P.J.
        Measurement of ocular surface irritation on a linear interval scale with the ocular comfort index.
        Invest Ophthalmol Vis Sci. 2007; 48: 4451-4458https://doi.org/10.1167/iovs.06-1253
        • Lundstrom M.
        • Pesudovs K.
        Catquest-9SF patient outcomes questionnaire: nine-item short-form Rasch-scaled revision of the Catquest questionnaire.
        J Cataract Refract Surg. 2009; 35: 504-513https://doi.org/10.1016/j.jcrs.2008.11.038
        • McAlinden C.
        • Skiadaresi E.
        • Moore J.
        • Pesudovs K.
        Subscale assessment of the NEI-RQL-42 questionnaire with Rasch analysis.
        Invest Ophthalmol Vis Sci. 2011; 52: 5685-5694https://doi.org/10.1167/iovs.10-67951
        • Linacre J.M.
        Sample size and item calibration stability.
        Rasch Meas Trans. 1994; 7: 328
        • Rasch G.
        Probabilistic models for some intelligence and attainment tests.
        Danish Institute for Educational Research, Copenhagen, Denmark1960
        • McAlinden C.
        • Gao R.
        • Wang Q.
        • Zhu S.
        • Yang J.
        • Yu A.
        • et al.
        Rasch analysis of three dry eye questionnaires and correlates with objective clinical tests.
        Ocul Surf. 2017; 15: 202-210https://doi.org/10.1016/j.jtos.2017.01.005
      3. The World Health Organization Quality of Life Assessment (WHOQOL): development and general psychometric properties. Soc Sci Med 1998;46(12):1569-85. https://doi.org/10.1016/s0277-9536(98)00009-4.

        • Khadka J.
        • McAlinden C.
        • Craig J.E.
        • Fenwick E.K.
        • Lamoureux E.L.
        • Pesudovs K.
        Identifying content for the glaucoma-specific item bank to measure quality-of-life parameters.
        J Glaucoma. 2015; 24: 12-19https://doi.org/10.1097/IJG.0b013e318287ac11
        • Khadka J.
        • Fenwick E.
        • Lamoureux E.
        • Pesudovs K.
        Methods to develop the eye-tem bank to measure ophthalmic quality of life.
        Optom Vis Sci. 2016; 93: 1485-1494https://doi.org/10.1097/OPX.0000000000000992
        • Garamendi E.
        • Pesudovs K.
        • Stevens M.J.
        • Elliott D.B.
        The Refractive Status and Vision Profile: evaluation of psychometric properties and comparison of Rasch and summated Likert-scaling.
        Vision Res. 2006; 46: 1375-1383https://doi.org/10.1016/j.visres.2005.07.007
        • Pesudovs K.
        • Garamendi E.
        • Elliott D.B.
        The Quality of Life Impact of Refractive Correction (QIRC) Questionnaire: development and validation.
        Optom Vis Sci. 2004; 81: 769-777https://doi.org/10.1097/00006324-200410000-00009
        • Garamendi E.
        • Pesudovs K.
        • Elliott D.B.
        Changes in quality of life after laser in situ keratomileusis for myopia.
        J Cataract Refract Surg. 2005; 31: 1537-1543https://doi.org/10.1016/j.jcrs.2004.12.059
        • Pesudovs K.
        • Garamendi E.
        • Elliott D.B.
        A quality of life comparison of people wearing spectacles or contact lenses or having undergone refractive surgery.
        J Refract Surg. 2006; 22 (https://www.ncbi.nlm.nih.gov/pubmed/16447932): 19-27
        • Ieong A.
        • Hau S.C.
        • Rubin G.S.
        • Allan B.D.
        Quality of life in high myopia before and after implantable Collamer lens implantation.
        Ophthalmology. 2010; 117: 2295-2300https://doi.org/10.1016/j.ophtha.2010.03.055
        • McAlinden C.
        • Moore J.E.
        Multifocal intraocular lens with a surface-embedded near section: short-term clinical outcomes.
        J Cataract Refract Surg. 2011; 37: 441-445https://doi.org/10.1016/j.jcrs.2010.08.055
        • Meidani A.
        • Tzavara C.
        • Dimitrakaki C.
        • Pesudovs K.
        • Tountas Y.
        Femtosecond laser-assisted LASIK improves quality of life.
        J Refract Surg. 2012; 28: 319-326https://doi.org/10.3928/1081597X-20120403-01
      4. Ang M, Ho H, Fenwick E, Lamoureux E, Htoon HM, Koh J, et al. Vision-related quality of life and visual outcomes after small-incision lenticule extraction and laser in situ keratomileusis. J Cataract Refract Surg 2015;41(10):2136-44. https://doi.org/10.1016/j.jcrs.2015.10.049.

        • Han T.
        • Zheng K.
        • Chen Y.
        • Gao Y.
        • He L.
        • Zhou X.
        Four-year observation of predictability and stability of small incision lenticule extraction.
        BMC Ophthalmol. 2016; 16: 149https://doi.org/10.1186/s12886-016-0331-0
        • Martinez-Plaza E.
        • Lopez-Miguel A.
        • Fernandez I.
        • Blazquez-Arauzo F.
        • Maldonado M.J.
        Effect of central hole location in phakic intraocular lenses on visual function under progressive headlight glare sources.
        J Cataract Refract Surg. 2019; 45: 1591-1596https://doi.org/10.1016/j.jcrs.2019.06.022
        • Han T.
        • Xu Y.
        • Han X.
        • Shang J.
        • Zeng L.
        • Zhou X.
        Quality of life impact of refractive correction (QIRC) results three years after SMILE and FS-LASIK.
        Health Qual Life Outcomes. 2020; 18: 107https://doi.org/10.1186/s12955-020-01362-8
        • Pesudovs K.
        • Garamendi E.
        • Elliott D.B.
        The contact lens impact on quality of life (CLIQ) questionnaire: development and validation.
        Invest Ophthalmol Vis Sci. 2006; 47: 2789-2796https://doi.org/10.1167/iovs.05-0933
        • Erdurmus M.
        • Yildiz E.H.
        • Abdalla Y.F.
        • Hammersmith K.M.
        • Rapuano C.J.
        • Cohen E.J.
        Contact lens related quality of life in patients with keratoconus.
        Eye Contact Lens. 2009; 35: 123-127https://doi.org/10.1097/ICL.0b013e31819d1dd0
        • Yildiz E.H.
        • Erdurmus M.
        • Elibol E.S.
        • Acar B.
        • Vural E.T.
        Contact lens impact on quality of life in keratoconus patients: rigid gas permeable versus soft silicone-hydrogel keratoconus lenses.
        Int J Ophthalmol. 2015; 8: 1074-1077https://doi.org/10.3980/j.issn.2222-3959.2015.05.38
        • Bokhary K.A.
        • Alomar N.
        Assessment of visual function and Vision-related Quality of Life in female contact lens wearers with Dry Eye Syndrome.
        Saudi J Ophthalmol. 2018; 32: 211-216https://doi.org/10.1016/j.sjopt.2018.03.001
        • Holden B.A.
        • Fricke T.R.
        • Wilson D.A.
        • Jong M.
        • Naidoo K.S.
        • Sankaridurg P.
        • et al.
        Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050.
        Ophthalmology. 2016; 123: 1036-1042https://doi.org/10.1016/j.ophtha.2016.01.006
      5. Walline JJ, Gaume A, Jones LA, Rah MJ, Manny RE, Berntsen DA, et al. Benefits of contact lens wear for children and teens. Eye Contact Lens 2007;33(6 Pt 1):317-21. https://doi.org/10.1097/ICL.0b013e31804f80fb.

        • Lipson M.J.
        • Sugar A.
        • Musch D.C.
        Overnight corneal reshaping versus soft disposable contact lenses: vision-related quality-of-life differences from a randomized clinical trial.
        Optom Vis Sci. 2005; 82: 886-891https://doi.org/10.1097/01.opx.0000180818.40127.dc
        • Santodomingo-Rubido J.
        • Villa-Collar C.
        • Gilmartin B.
        • Gutierrez-Ortega R.
        Myopia control with orthokeratology contact lenses in Spain: a comparison of vision-related quality-of-life measures between orthokeratology contact lenses and single-vision spectacles.
        Eye Contact Lens. 2013; 39: 153-157https://doi.org/10.1097/ICL.0b013e31827a0241
        • Zhao F.
        • Zhao G.
        • Zhao Z.
        Investigation of the effect of orthokeratology lenses on quality of life and behaviors of children.
        Eye Contact Lens. 2018; 44: 335-338https://doi.org/10.1097/ICL.0000000000000529
        • Yang B.i.
        • Ma X.
        • Liu L.
        • Cho P.
        Vision-related quality of life of Chinese children undergoing orthokeratology treatment compared to single vision spectacles.
        Cont Lens Anterior Eye. 2021; 44: 101350https://doi.org/10.1016/j.clae.2020.07.001
        • Lipson M.J.
        Long-term clinical outcomes for overnight corneal reshaping in children and4adults.
        Eye Contact Lens. 2008; 34: 94-99https://doi.org/10.1097/ICL.0b013e31811eba10
        • Liu G.
        • Chen Z.
        • Xue F.
        • Li J.
        • Tian M.
        • Zhou X.
        • et al.
        Effects of myopic orthokeratology on visual performance and optical quality.
        Eye Contact Lens. 2018; 44: 316-321https://doi.org/10.1097/ICL.0000000000000372
      6. Walline JJ, Jones LA, Sinnott L, Chitkara M, Coffey B, Jackson JM, et al. Randomized trial of the effect of contact lens wear on self-perception in children. Optom Vis Sci 2009;86(3):222-32. https://doi.org/10.1097/OPX.0b013e3181971985.

      7. Walline JJ, Jones LA, Rah MJ, Manny RE, Berntsen DA, Chitkara M, et al. Contact Lenses in Pediatrics (CLIP) Study: chair time and ocular health. Optom Vis Sci 2007;84(9):896-902. https://doi.org/10.1097/OPX.0b013e3181559c3c.

      8. Rah MJ, Walline JJ, Jones-Jordan LA, Sinnott LT, Jackson JM, Manny RE, et al. Vision specific quality of life of pediatric contact lens wearers. Optom Vis Sci 2010;87(8):560-6. https://doi.org/10.1097/OPX.0b013e3181e6a1c8.

        • Walline J.J.
        • Bailey M.D.
        • Zadnik K.
        Vision-specific quality of life and modes of refractive error correction.
        Optom Vis Sci. 2000; 77: 648-652https://doi.org/10.1097/00006324-200012000-00011
        • Pomeda A.R.
        • Perez-Sanchez B.
        • Canadas Suarez M.D.P.
        • Prieto Garrido F.L.
        • Gutierrez-Ortega R.
        • Villa-Collar C.
        MiSight Assessment Study Spain: a comparison of vision-related quality-of-life measures between misight contact lenses and single-vision spectacles.
        Eye Contact Lens. 2018; 44: S99-S104https://doi.org/10.1097/ICL.0000000000000413
        • Fedtke C.
        • Bakaraju R.C.
        • Ehrmann K.
        • Chung J.
        • Thomas V.
        • Holden B.A.
        Visual performance of single vision and multifocal contact lenses in non-presbyopic myopic eyes.
        Cont Lens Anterior Eye. 2016; 39: 38-46https://doi.org/10.1016/j.clae.2015.07.005
        • Kang P.
        • Wildsoet C.F.
        Acute and short-term changes in visual function with multifocal soft contact lens wear in young adults.
        Cont Lens Anterior Eye. 2016; 39: 133-140https://doi.org/10.1016/j.clae.2015.09.004
        • Schulle K.L.
        • Berntsen D.A.
        • Sinnott L.T.
        • Bickle K.M.
        • Gostovic A.T.
        • Pierce G.E.
        • et al.
        Visual acuity and over-refraction in myopic children fitted with soft multifocal contact lenses.
        Optom Vis Sci. 2018; 95: 292-298https://doi.org/10.1097/OPX.0000000000001207
        • Kollbaum P.S.
        • Jansen M.E.
        • Tan J.
        • Meyer D.M.
        • Rickert M.E.
        Vision performance with a contact lens designed to slow myopia progression.
        Optom Vis Sci. 2013; 90: 205-214https://doi.org/10.1097/OPX.0b013e3182812205
        • Perez-Prados R.
        • Pinero D.P.
        • Perez-Cambrodi R.J.
        • Madrid-Costa D.
        Soft multifocal simultaneous image contact lenses: a review.
        Clin Exp Optom. 2017; 100: 107-127https://doi.org/10.1111/cxo.12488
        • Bickle K.M.
        • Mitchell G.L.
        • Walline J.J.
        Visual performance with spherical and multifocal contact lenses in a pediatric population.
        Optom Vis Sci. 2021; 98: 483-489https://doi.org/10.1097/OPX.0000000000001695
        • Gregory H.R.
        • Nti A.N.
        • Wolffsohn J.S.
        • Berntsen D.A.
        • Ritchey E.R.
        Visual performance of center-distance multifocal contact lenses fit using a myopia control paradigm.
        Optom Vis Sci. 2021; 98: 272-279https://doi.org/10.1097/OPX.0000000000001665
        • Yam J.C.
        • Jiang Y.
        • Tang S.M.
        • Law A.K.P.
        • Chan J.J.
        • Wong E.
        • et al.
        Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control.
        Ophthalmology. 2019; 126: 113-124https://doi.org/10.1016/j.ophtha.2018.05.029
        • Cooper J.
        • Eisenberg N.
        • Schulman E.
        • Wang F.M.
        Maximum atropine dose without clinical signs or symptoms.
        Optom Vis Sci. 2013; 90: 1467-1472https://doi.org/10.1097/OPX.0000000000000037
        • Yam J.C.
        • Li F.F.
        • Zhang X.
        • Tang S.M.
        • Yip B.H.K.
        • Kam K.W.
        • et al.
        Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study: phase 2 report.
        Ophthalmology. 2020; 127: 910-919https://doi.org/10.1016/j.ophtha.2019.12.011
        • Lam C.S.Y.
        • Tang W.C.
        • Tse D.-Y.
        • Lee R.P.K.
        • Chun R.K.M.
        • Hasegawa K.
        • et al.
        Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial.
        Br J Ophthalmol. 2020; 104: 363-368https://doi.org/10.1136/bjophthalmol-2018-313739
      9. Bao J, Yang A, Huang Y, Li X, Pan Y, Ding C, et al. One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br J Ophthalmol 2021. https://doi.org/10.1136/bjophthalmol-2020-318367.

        • Tan Q.
        • Ng A.L.
        • Cheng G.P.
        • Woo V.C.
        • Cho P.
        Combined atropine with orthokeratology for myopia control: study design and preliminary results.
        Curr Eye Res. 2019; 44: 671-678https://doi.org/10.1080/02713683.2019.1568501
        • Vincent S.J.
        • Cho P.
        • Chan K.Y.
        • Fadel D.
        • Ghorbani-Mojarrad N.
        • González-Méijome J.M.
        • et al.
        CLEAR – orthokeratology.
        Cont Lens Anterior Eye. 2021; 44: 240-269https://doi.org/10.1016/j.clae.2021.02.003
        • Kinoshita N.
        • Konno Y.
        • Hamada N.
        • Kanda Y.
        • Shimmura-Tomita M.
        • Kaburaki T.
        • et al.
        Efficacy of combined orthokeratology and 0.01% atropine solution for slowing axial elongation in children with myopia: a 2-year randomised trial.
        Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-69710-8
        • Pesudovs K.
        • Gothwal V.K.
        • Wright T.
        • Lamoureux E.L.
        Remediating serious flaws in the national eye institute visual function questionnaire.
        J Cataract Refract Surg. 2010; 36: 718-732https://doi.org/10.1016/j.jcrs.2009.11.019
        • Bullimore M.A.
        • Brennan N.A.
        Myopia control: why each diopter matters.
        Optom Vis Sci. 2019; 96: 463-465https://doi.org/10.1097/OPX.0000000000001367
        • Bullimore M.A.
        • Ritchey E.R.
        • Shah S.
        • Leveziel N.
        • Bourne R.R.A.
        • Flitcroft D.I.
        The risks and benefits of myopia control.
        Ophthalmology. 2021; 128: 1561-1579https://doi.org/10.1016/j.ophtha.2021.04.032