Anatomical and physiological considerations in scleral lens wear: Intraocular pressure

Published:November 22, 2021DOI:https://doi.org/10.1016/j.clae.2021.101535

      Abstract

      Intraocular pressure (IOP) is maintained through complex and interrelated systems which control aqueous production and drainage, and it has been suggested that scleral lens (SL) wear may disrupt these vital homeostatic processes. This review provides an overview of anatomical and physiological processes that control IOP, identifies potential effects of SLs on these regulatory mechanisms, and examines studies that have attempted to quantify the effect of SLs on IOP. Lack of access to the cornea during SL wear makes accurate assessment of IOP challenging; therefore, a range of different assessment techniques and instruments have been employed to quantify IOP during and following SL wear. Some studies have evaluated IOP using standard techniques prior to lens application and following lens removal, or through a large central fenestration. Other studies have utilised instruments that facilitate assessment of IOP on the peripheral cornea or conjunctiva overlying the sclera (e.g. Schiotz, transpalpebral, and pneumatonometry). Two studies have recently evaluated changes in optic nerve structure during SL wear. Conflicting results have been reported on this topic, much of which examines changes in IOP in healthy subjects over limited periods of time. Currently, only a few studies have reported on long-term effects of SL wear on IOP in habitual SL wearers (after lens removal). Future research in this area must not only consider the fact that ocular conditions treated with SLs may potentially alter corneal biomechanical properties which can influence IOP, but also that these properties may be further altered by SL wear. Monitoring other risk factors for glaucoma (permanent alterations in optic nerve physiology, visual field defects) could provide a more comprehensive assessment of potentially increased risk of glaucomatous optic neuropathy due to SL wear. Ongoing clinical assessment of optic nerve structure and function is advisable in patients at risk for glaucoma who require SLs.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Gabelt B.T.
        • Karurman P.L.
        • Kaufman P.L.
        Production and flow of aqueous humor.
        in: Levin L. Adler F. Adler’s Physiology of the Eye. 11th ed. Saunders/Elsevier, Edinburgh2011
        • Huggert A.
        Increase of the intraocular pressure when using contact glasses.
        Acta Ophthalmol. 1951; 29: 475-481
        • McMonnies C.W.
        A hypothesis that scleral contact lenses could elevate intraocular pressure.
        Clin Exp Optom. 2016; 99: 594-596
        • Fadel D.
        • Kramer E.
        Potential contraindications to scleral lens wear.
        Cont Lens Anterior Eye. 2019; 42: 92-103
        • Gabelt B.T.
        • Kaufman P.L.
        • Gabelt B.T.
        • Kaufman P.
        Aqueous humor hydrodynamics.
        in: Kaufman P. Alm A. Adler’s Physiology of the Eye. 9th ed. MO: Mosby, St. Louis2003
        • Mark H.H.
        Aqueous humor dynamics in historical perspective.
        Surv Ophthalmol. 2010; 55: 89-100
        • Gabelt B.T.
        • Kiland J.
        • Tian B.Y.
        • Kaufman P.
        Aqueous humor: secretion and dynamics.
        in: Duane’s Clinical Ophthalmology. Vol 2. Lippincott Williams & Wilkins, Philadelphia, PA2006
        • Coca-Prados M.
        • Sánchez-Torres J.
        Molecular approaches to the study of the Na+, K+ -ATPase and chloride channels in the ocular ciliary epithelium.
        in: Civan M.M. Current Topics in Membranes and Transport. Academic Press Inc., 1997: 25-53
        • Reddy V.N.
        Dynamics of transport systems in the eye. Friedenwald Lecture.
        Invest Ophthalmol Vis Sci. 1979; 18: 1000-1018
        • Kinsey V.E.
        The chemical composition and the osmotic pressure of the aqueous humor and plasma of the rabbit.
        J Gen Physiol. 1951; 34: 389-402
        • Vadillo-Ortega F.
        • Gonzalez-Avila G.
        • Chevez P.
        • Abraham C.R.
        • Montano M.
        • Selman-Lama M.
        A latent collagenase in human aqueous humor.
        Invest Ophthalmol Vis Sci. 1989; 30: 332-335
        • Linner E.
        A method for determining the rate of plasma flow through the secretory part of the ciliary body.
        Acta Physiol. 1951; 22: 83-86
        • Bill A.
        The effect of changes in arterial blood pressure on the rate of aqueous humour formation in a primate (Cercopithecus ethiops).
        Ophthalmic Res. 1970; 1: 193-200
        • Reitsamer H.A.
        • Kiel J.W.
        Relationship between ciliary blood flow and aqueous production in rabbits.
        Invest Ophthalmol Vis Sci. 2003; 44: 3967-3971
        • Gould D.B.
        • Smith R.S.
        • John S.W.M.
        Anterior segment development relevant to glaucoma.
        Int J Dev Biol. 2004; 48: 1015-1029
        • Abu-Hassan D.W.
        • Acott T.S.
        • Kelley M.J.
        The trabecular meshwork: a basic review of form and function.
        J Ocul Biol. 2014; 2: 1-22
        • Bergmanson J.P.G.
        Clinical Ocular Anatomy and Physiology.
        27th ed. Texas Eye Research and Technology Center, Houston, TX2020
        • Lütjen-Drecoll E.
        Functional morphology of the trabecular meshwork in primate eyes.
        Prog Ret Eye Res. 1999; 18: 91-119
        • Ethier C.R.
        • Kamm R.D.
        • Palaszewski B.A.
        • Johnson M.C.
        • Richardson T.M.
        Calculations of flow resistance in the juxtacanalicular meshwork.
        Invest Ophthalmol Vis Sci. 1986; 27: 1741-1750
        • McEwen W.K.
        Application of Poiseuille’s law to aqueous outflow.
        Arch Ophthalmol. 1958; 60: 290-294
        • Acott T.S.
        • Kelley M.J.
        Extracellular matrix in the trabecular meshwork.
        Exp Eye Res. 2008; 86: 543-561
        • Chowdhury U.R.
        • Hann C.R.
        • Stamer W.D.
        • Fautsch M.P.
        Aqueous humor outflow: dynamics and disease.
        Invest Ophthalmol Vis Sci. 2015; 56: 2993-3003
        • Vittal V.
        • Rose A.
        • Gregory K.E.
        • Kelley M.J.
        • Acott T.S.
        Changes in gene expression by trabecular meshwork cells in response to mechanical stretching.
        Invest Ophthalmol Vis Sci. 2005; 46: 2857-2868
        • Kim S.H.
        • Turnbull J.
        • Guimond S.
        Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor.
        Endocrinol. 2011; 209: 139-151
        • Bradley J.M.B.
        • Kelley M.J.
        • Zhu X.
        • Anderssohn A.M.
        • Alexander J.P.
        • Acott T.S.
        Effects of mechanical stretching on trabecular matrix metalloproteinases.
        Invest Ophthalmol Vis Sci. 2001; 42: 1505-1513
        • Weinreb R.
        • Cotlier E.
        • Yue B.Y.J.T.
        The extracellular matrix and its modulation in the trabecular meshwork.
        Surv Ophthalmol. 1996; 40: 379-390
        • Xin C.
        • Song S.
        • Johnstone M.
        • Wang N.
        • Wang R.K.
        Multidisciplinary ophthalmic imaging quantification of pulse-dependent trabecular meshwork motion in normal humans using phase-sensitive OCT.
        Invest Ophthalmol Vis Sci. 2018; 59: 3675-3681
        • Gao K.
        • Song S.
        • Johnstone M.A.
        • Zhang Q.
        • Xu J.
        • Zhang X.
        • et al.
        Reduced pulsatile trabecular meshwork motion in eyes with primary open angle glaucoma using phase-sensitive optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2020; 6121
        • Tripathi R.C.
        Mechanism of the aqueous outflow across the trabecular wall of Schlemm’s canal.
        Exp Eye Res. 1971; 11: 116-121
        • Tripathi R.C.
        The functional morphology of the outflow systems of ocular and cerebrospinal fluids.
        Exp Eye Res. 1977; 25: 65-116
        • Weinreb R.N.
        Uveoscleral outflow: the other outflow pathway.
        J Glaucoma. 2000; 9: 343-345
        • McDougal D.H.
        • Gamlin P.D.
        Autonomic control of the eye.
        Compr Physiol. 2015; 5: 439-473
        • Bhatt K.
        • Gong H.
        • Freddo T.F.
        Freeze-fracture studies of interendothelial junctions in the angle of the human eye.
        Invest Ophthalmol Vis Sci. 1995; 36: 1379-1389
        • Carreon T.
        • van der Merwe E.
        • Fellman R.L.
        • Johnstone M.
        • Bhattacharya S.K.
        Aqueous outflow - A continuum from trabecular meshwork to episcleral veins.
        Prog Ret Eye Res. 2017; 57: 108-133
        • Inomata H.
        • Bill A.
        • Smelser G.K.
        Aqueous humor pathways through the trabecular meshwork and into Schlemm’s canal in the cynomolgus monkey (Macaca irus). An electron microscopic study.
        Am J Ophthalmol. 1972; 73: 760-789
        • Xin C.
        • Wang R.K.
        • Song S.
        • Shen T.
        • Wen J.
        • Martin E.
        • et al.
        Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion.
        Exp Eye Res. 2017; 158: 171-186
        • Bentley M.D.
        • Hann C.R.
        • Fautsch M.P.
        Anatomical variation of human collector channel orifices.
        Invest Ophthalmol Vis Sci. 2016; 57: 1153-1159
        • Rohen J.W.
        Rentsch FJ.
        Albrecht von Graefes Arch Klin Exp Ophthalmol. 1968; 176: 309-329
        • Dvorak-Theobald
        Further studies on the canal of Schlemm; its anastomoses and anatomic relations.
        Am J Ophthalmol. 1955; 39: 65-89
        • Ashton N.
        Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part I. Aqueous veins.
        Br J Ophthalmol. 1951; 35: 291-303
        • Hann C.R.
        • Vercnocke A.J.
        • Bentley M.D.
        • Jorgensen S.M.
        • Fautsch M.P.
        Anatomic changes in Schlemm’s canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures.
        Invest Ophthalmol Vis Sci. 2014; 55: 5834-5841
        • Hariri S.
        • Johnstone M.
        • Jiang Y.i.
        • Padilla S.
        • Zhou Z.
        • Reif R.
        • et al.
        Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography.
        J Biomed Opt. 2014; 19106013
        • Johnstone M.
        • Jamil A.
        • Martin E.
        Aqueous veins and open angle glaucoma.
        in: Schacknow P.N. Samples J.R. The Glaucoma Book: A Practical, Evidence-Based Approach to Patient Care. Springer, New York2010: 65-78
        • Ascher K.W.
        The aqueous veins: I. Physiologic importance of the visible elimination of intraocular fluid.
        Am J Ophthalmol. 1942; 25: 1174-1209
        • Johnstone M.
        • Martin E.
        • Jamil A.
        Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes.
        Exp Eye Res. 2011; 92: 318-327
        • Ascher K.W.
        Aqueous veins and contact lenses.
        Am J Ophthalmol. 1952; 35: 10-20
        • McMonnies C.W.
        • Boneham G.C.
        Experimentally increased intraocular pressure using digital forces.
        Eye Contact Lens. 2007; 33: 124-129
        • Fautsch M.P.
        • Johnson D.H.
        • Acott T.S.
        • Aihara M.
        • Bhattacharya S.K.
        • Borrás T.
        • et al.
        Aqueous humor outflow: what do we know? Where will it lead us?.
        Invest Ophthalmol Vis Sci. 2006; 47: 4181-4187
        • Vranka J.A.
        • Kelley M.J.
        • Acott T.S.
        • Keller K.E.
        Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma.
        Exp Eye Res. 2015; 133: 112-125
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Collins M.J.
        Morphological changes in the conjunctiva, episclera and sclera following short-term miniscleral contact lens wear in rigid lens neophytes.
        Cont Lens Anterior Eye. 2016; 39: 53-61
        • Acott T.S.
        • Kelley M.J.
        • Keller K.E.
        • Vranka J.A.
        • Abu-Hassan D.W.
        • Li X.
        • et al.
        Intraocular pressure homeostasis: maintaining balance in a high-pressure environment.
        J Ocul Pharmacol Ther. 2014; 30: 94-101
        • Huggert A.
        The intraocular pressure in glaucomatous eyes, following the use of contact lenses.
        Acta Ophthalmol. 1953; 31: 141-152
        • Miller D.
        • Carroll J.M.
        • Holmberg A.
        Scleral lens cling measurement.
        Am J Ophthalmol. 1968; 65: 929-930
        • Joos K.M.
        • Kay M.D.
        • Pillunat L.E.
        • Harris A.
        • Gendron E.K.
        • Feuer W.J.
        • et al.
        Effect of acute intraocular pressure changes on short posterior ciliary artery haemodynamics.
        Br J Ophthalmol. 1999; 83: 33-38
        • Kauffman M.J.
        • Gilmartin C.A.
        • Bennett E.S.
        • Bassi C.J.
        A Comparison of the short-term settling of three scleral lens designs.
        Optom Vis Sci. 2014; 91: 1462-1466
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        The temporal dynamics of miniscleral contact lenses: central corneal clearance and centration.
        Cont Lens Anterior Eye. 2018; 41: 162-168
        • Nau C.B.
        • Schornack M.M.
        Region-specific changes in postlens fluid reservoir depth beneath small-diameter scleral lenses over 2 hours.
        Eye Contact Lens. 2018; 44: S210-S215
        • Fadel D.
        • Ezekiel D.
        Fenestrated scleral lenses: back to the origins? Review of their benefits and fitting technique.
        Optom Vis Sci. 2020; 97: 807-820
        • Collewijn H.
        • van der Mark F.
        • Jansen T.C.
        Precise recording of human eye movements.
        Vis Res. 1975; 15: 447-450
        • Irving E.L.
        • Zacher J.E.
        • Allison R.S.
        • Callender M.G.
        Effects of scleral search coil wear on visual function.
        Invest Ophthalmol Vis Sci. 2003; 44: 1933-1938
        • Murphy P.J.
        • Duncan A.L.
        • Glennie A.J.
        • Knox P.C.
        The effect of scleral search coil lens wear on the eye.
        Br J Ophthalmol. 2001; 85: 332-335
        • Elving-Kokke K.H.
        • Sas-Meertens M.A.V.
        • de Beer F.M.
        • van Rijn L.J.
        • de Boer J.H.
        • Visser E.-S.
        The treatment of ocular hypotony after trabeculectomy with a scleral lens: a case series.
        Cont Lens Anterior Eye. 2019; 42: 123-126
        • Hill R.A.
        • Aminlari A.
        • Sassani J.W.
        • Michalski M.
        Use of a symblepharon ring for treatment of over-filtration and leaking blebs after glaucoma filtration surgery.
        Ophthalmic Surg. 1990; 21: 707-710
        • Iester M.
        • Mete M.
        • Figus M.
        • Frezzotti P.
        Incorporating corneal pachymetry into the management of glaucoma.
        J Cataract Refract Surg. 2009; 35: 1623-1628
        • Whitacre M.M.
        • Stein R.A.
        • Hassanein K.
        The effect of corneal thickness on applanation tonometry.
        Am J Ophthalmol. 1993; 115: 592-596
        • Hamilton-Maxwell K.
        • King N.
        Modern disposable hydrogel contact lens removal has a minimal effect on intraocular pressure.
        Ophthalmic Physiol Opt. 2015; 35: 231-235
        • Khan J.A.
        • LaGreca B.A.
        Tono-pen estimation of intraocular pressure through bandage contact lenses.
        Am J Ophthalmol. 1989; 108: 422-425
        • Cook J.A.
        • Botello A.P.
        • Elders A.
        • Fathi Ali A.
        • Azuara-Blanco A.
        • Fraser C.
        • et al.
        Systematic review of the agreement of tonometers with Goldmann applanation tonometry.
        Ophthalmology. 2012; 119: 1552-1557
        • Den G.H.
        [Abfluss des Kammerwasswes beim Menschen].
        Ophthalmologica. 1946; 112: 344-349
        • Nagarajan S.
        • Velayutham V.
        • Ezhumalai G.
        Comparative evaluation of applanation and indentation tonometers in a community ophthalmology setting in southern India.
        Saudi J Ophthalmol. 2016; 30: 83-87
        • Shulman P.F.
        An evaluation of the Schiotz Sklar corneal tonometer used on the sclera.
        Am J Optom Arch Am Acad Optom. 1963; 40: 133-139
        • Senthil S.
        • Chary R.
        • Ali M.H.
        • Choudhari N.
        • Badakere S.
        • Krishnamurthy R.
        • et al.
        Schiotz scleral intraocular pressure readings predict Goldmann applanation readings better than rebound tonometry.
        Cornea. 2019; 38: 1117-1123
        • Schwartz J.T.
        • Dell’osso G.G.
        Comparison of Goldmann and Schiotz tonometry in a community.
        Arch Ophthalmol. 1966; 75: 788-795
        • Wittenberg S.
        Evaluation of the pneuma-tonometer.
        Am J Optom Physiol Opt. 1978; 55: 337-347
        • Kutzscher A.E.
        • Kumar R.S.
        • Ramgopal B.
        • Rackenchath M.V.
        • Sathi Devi
        • Nagaraj S.
        • et al.
        Reproducibility of 5 methods of ocular tonometry.
        Ophthalmol Glaucoma. 2019; 2: 429-434
        • Breitfeller J.M.
        • Krohn D.L.
        Limbal pneumatonometry.
        Am J Ophthalmol. 1980; 89: 344-352
        • Magalhaes O.A.
        • Aldave A.J.
        Scleral pneumatonometry in penetrating keratoplasty: a clinical study.
        Cornea. 2017; 36: 1200-1205
        • Lee J.H.
        • Sanchez L.R.
        • Porco T.
        • Han Y.
        • de Alba Campomanes A.G.
        Correlation of corneal and scleral pneumatonometry in pediatric patients.
        Ophthalmology. 2018; 125: 1209-1214
        • Kapamajian M.A.
        • de la Cruz J.
        • Hallak J.A.
        • Vajaranant T.S.
        Correlation between corneal and scleral pneumatonometry: an alternative method for intraocular pressure measurement.
        Am J Ophthalmol. 2013; 156: 902-906.e1
        • Kuo D.S.
        • Ou Y.
        • Jeng B.H.
        • Bhisitkul R.
        • Stewart J.M.
        • Duncan J.L.
        • et al.
        Correlation of serial scleral and corneal pneumatonometry.
        Ophthalmology. 2015; 122: 1771-1776
        • Latina M.
        • Shazly T.
        • Iospa R.
        • Chynn E.
        Accuracy of transpalpebral tonometer compared to Goldmann applanation tonometer in normal and glaucomatous eyes.
        Invest Ophthalmol Vis Sci. 2009; 50: 2843
        • Troost A.
        Transpalpebral tonometry: reliability and comparison with Goldmann applanation tonometry and palpation in healthy volunteers.
        Br J Ophthalmol. 2005; 89: 280-283
        • Troost A.
        • Specht K.
        • Krummenauer F.
        • Yun S.H.
        • Schwenn O.
        Deviations between transpalpebral tonometry using TGDc-01 and Goldmann applanation tonometry depending on the IOP level.
        Graefes Arch Clin Exp Ophthalmol. 2005; 243: 853-858
        • Lam A.K.C.
        • Lam C.H.
        • Chan R.
        The validity of a digital eyelid tonometer (TGDc-01) and its comparison with Goldmann applanation tonometry - a pilot study.
        Ophthalmic Physiol Opt. 2005; 25: 205-210
        • Doherty M.D.
        • Carrim Z.I.
        • O’Neill D.P.
        Diaton tonometry: an assessment of validity and preference against Goldmann tonometry.
        Clin Exp Ophthalmol. 2012; 40: e171-e175
        • Li Y.
        • Shi J.
        • Duan X.
        • Fan F.
        Transpalpebral measurement of intraocular pressure using the Diaton tonometer versus standard Goldmann applanation tonometry.
        Graefe’s Arch Clin Exp Ophthalmol. 2010; 248: 1765-1770
        • Kontiola A.
        A new electromechanical method for measuring intraocular pressure.
        Doc Ophthalmol. 1997; 93: 265-276
        • Gomez-Gomez A.
        • Talens-Estarelles C.
        • Alcocer-Yuste P.
        • Nieto J.
        Reliability of iCare ic100 rebound tonometry and agreement with Goldmann applanation tonometry in healthy and post-myopic LASIK patients.
        J Glaucoma. 2021; 30: 634-642
        • Vincent S.J.
        • Vincent R.A.
        • Shields D.
        • Lee G.A.
        Comparison of intraocular pressure measurement between rebound, non-contact and Goldmann applanation tonometry in treated glaucoma patients.
        Clin Exp Ophthalmol. 2012; 40: e163-e170
        • Badakere S.V.
        • Chary R.
        • Choudhari N.S.
        • Rao H.L.
        • Garudadri C.
        • Senthil S.
        Agreement of intraocular pressure measurement of Icare ic200 with Goldmann applanation tonometer in adult eyes with normal cornea.
        Ophthalmol Glaucoma. 2021; 4: 89-94
        • Muttuvelu D.V.
        • Baggesen K.
        • Ehlers N.
        Precision and accuracy of the ICare tonometer – peripheral and central IOP measurements by rebound tonometry.
        Acta Ophthalmol. 2012; 90: 322-326
        • Queirós A.
        • González-Méijome J.M.
        • Fernandes P.
        • Jorge J.
        • Montés-Micó R.
        • Almeida J.B.
        • et al.
        Technical note: a comparison of central and peripheral intraocular pressure using rebound tonometry.
        Ophthalmic Physiol Opt. 2007; 27: 506-511
        • Buckhurst H.D.
        • Gilmartin B.
        • Lam A.
        • Cubbidge R.P.
        • Logan N.S.
        In vivo measures of anterior scleral resistance in humans with rebound tonometry.
        Ophthalmic Physiol Opt. 2020; 40: 472-481
        • Rateb M.
        • Abdel-Radi M.
        • Eldaly Z.
        • Nagy Elmohamady M.
        • Noor El Din A.
        Comparison of IOP measurement by Goldmann applanation tonometer, iCare rebound tonometer, and Tono-Pen in keratoconus patients after MyoRing implantation.
        J Ophthalmol. 2019; 9: 1964107
        • Cronemberger S.
        • Veloso A.W.
        Comparison of Tono-Pen AVIA and handheld applanation tonometry in primary congenital glaucoma.
        J Glaucoma. 2021; 30: E227-30
        • Blumberg M.J.
        • Varikuti V.N.V.
        • Weiner A.
        Real-world comparison between the Tonopen and Goldmann applanation tonometry in a university glaucoma clinic.
        Int Ophthalmol. 2021; 41: 1815-1825
        • Estrovich I.E.
        • Shen C.
        • Chu Y.
        • Downs J.C.
        • Gardiner S.
        • Straiko M.
        • et al.
        Schiotz tonometry accurately measures intraocular pressure in Boston type 1 keratoprosthesis eyes.
        Cornea. 2015; 34: 682-685
        • Nau C.B.
        • Schornack M.M.
        • McLaren J.W.
        • Sit A.J.
        Intraocular pressure after 2 hours of small-diameter scleral lens wear.
        Eye Contact Lens. 2016; 42: 350-353
        • Vincent S.J.
        • Alonso‐Caneiro D.
        • Collins M.J.
        Evidence on scleral contact lenses and intraocular pressure.
        Clin Exp Optom. 2017; 100: 87-88
        • Aitsebaomo A.P.
        • Wong-Powell J.
        • Miller W.
        • Amir F.
        Influence of scleral lens on intraocular pressure.
        J Cont Lens Res Sci. 2019; 3: e1-e9
        • Cheung S.Y.
        • Collins M.J.
        • Vincent S.J.
        The impact of short-term fenestrated scleral lens wear on intraocular pressure.
        Cont Lens Anterior Eye. 2020; 43: 585-588
        • Obinwanne C.J.
        • Echendu D.C.
        • Agbonlahor O.
        • Dike S.
        Changes in scleral tonometry and anterior chamber angle after short-term scleral lens wear.
        Optom Vis Sci. 2020; 97: 720-725
        • Fogt J.S.
        • Nau C.B.
        • Schornack M.
        • Shorter E.
        • Nau A.
        • Harthan J.S.
        Comparison of pneumatonometry and transpalpebral tonometry measurements of intraocular pressure during scleral lens wear.
        Optom Vis Sci. 2020; 97: 711-719
        • Walker M.
        • Pardon L.
        • Redfern R.
        • Patel N.
        Intraocular pressure and optic nerve head morphology during scleral lens wear.
        Optom Vis Sci. 2020; 97: 661-668
        • Formisano M.
        • Franzone F.
        • Alisi L.
        • Pistella S.
        • Spadea L.
        Effects of scleral contact lenses for keratoconus management on visual quality and intraocular pressure.
        Ther Clin Risk Manag. 2021; 17: 79-85
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        The time course and nature of corneal oedema during sealed miniscleral contact lens wear.
        Cont Lens Anterior Eye. 2019; 42: 49-54
        • Michaud L.
        • Samaha D.
        • Giasson C.J.
        Intra-ocular pressure variation associated with the wear of scleral lenses of different diameters.
        Cont Lens Anterior Eye. 2019; 42: 104-110
        • Read S.A.
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Bremner A.
        • Fothergill A.
        • Ismail B.
        • et al.
        Anterior eye tissue morphology: scleral and conjunctival thickness in children and young adults.
        Sci Rep. 2016; 633796
        • Read S.A.
        • Alonso-Caneiro D.
        • Free K.A.
        • Labuc-Spoors E.
        • Leigh J.K.
        • Quirk C.J.
        • et al.
        Diurnal variation of anterior scleral and conjunctival thickness.
        Ophthalmic Physiol Opt. 2016; 36: 279-289
        • Consejo A.
        • Behaegel J.
        • Van Hoey M.
        • Wolffsohn J.S.
        • Rozema J.J.
        • Iskander D.R.
        Anterior eye surface changes following miniscleral contact lens wear.
        Cont Lens Anterior Eye. 2019; 42: 70-74
        • Walker M.K.
        • Schornack M.M.
        • Vincent S.J.
        Anatomical and physiological considerations in scleral lens wear: conjunctiva and sclera.
        Cont Lens Anterior Eye. 2020; 43: 517-528
        • Patel N.
        • McAllister F.
        • Pardon L.
        • Harwerth R.
        The effects of graded intraocular pressure challenge on the optic nerve head.
        Exp Eye Res. 2018; 169: 79-90
        • Gupta L.
        • Rahmatnejad K.
        • Gogte P.
        • Siraj S.
        • Fudemberg S.J.
        • Mantravadi A.V.
        • et al.
        Reproducibility of minimum rim width and retinal nerve fibre layer thickness using the anatomic positioning system in glaucoma patients.
        Can J Ophthalmol. 2019; 54: 335-341
        • Enders P.
        • Bremen A.
        • Schaub F.
        • Hermann M.M.
        • Diestelhorst M.
        • Dietlein T.
        • et al.
        Intraday repeatability of Bruch’s membrane opening-based neuroretinal rim measurements.
        Invest Ophthalmol Vis Sci. 2017; 58: 5195-5200
        • Park K.
        • Kim J.
        • Lee J.
        Reproducibility of Bruch membrane opening-minimum rim width measurements with spectral domain optical coherence tomography.
        J Glaucoma. 2017; 26: 1041-1050
        • Samaha D.
        • Michaud L.
        Bruch membrane opening minimum rim width changes during scleral lens wear.
        Eye Contact Lens. 2021; 47: 295-300
        • Montalt J.
        • Porcar E.
        • Espana-Gregori E.
        • Peris-Martinez C.
        Corneal biomechanical parameters with corneoscleral contact lenses in post-laser in situ keratomileusis eyes.
        Eye Contact Lens. 2018; 44: S65-S69
        • Porcar E.
        • Montalt J.
        • Espana-Gregori E.
        • Peris-Martinez C.
        Impact of corneoscleral contact lens usage on corneal biomechanical parameters in keratoconic eyes.
        Eye Contact Lens. 2019; 45: 318-323
        • Barnett M.
        • Courey C.
        • Fadel D.
        • Lee K.
        • Michaud L.
        • Montani G.
        • et al.
        CLEAR - Scleral lenses.
        Cont Lens Anterior Eye. 2021; 44: 270-288
        • Shahnazi K.C.
        • Isozaki V.L.
        • Chiu G.B.
        Effect of scleral lens wear on central corneal thickness and intraocular pressure in patients with ocular surface disease.
        Eye Contact Lens. 2020; 46: 341-347
        • Kramer E.G.
        • Vincent S.J.
        Intraocular pressure changes in neophyte scleral lens wearers: A prospective study.
        Cont Lens Anterior Eye. 2020; 43: 609-612
        • Chen Y.
        • Rong H.
        • Liu W.
        • Liu G.
        • Du B.
        • Jin C.
        • et al.
        Agreement of corrected intraocular pressure values between Corvis ST and Pentacam in patients with keratoconus, subclinical keratoconus, and normal cornea.
        Cornea. 2021; (In press)
        • Zhang H.
        • Sun Z.
        • Li L.
        • Sun R.
        • Zhang H.
        Comparison of intraocular pressure measured by ocular response analyzer and Goldmann applanation tonometer after corneal refractive surgery: a systematic review and meta-analysis.
        BMC Ophthalmol. 2020; 20: 23
        • Salvetat M.L.
        • Zeppieri M.
        • Miani F.
        • Tosoni C.
        • Parisi L.
        • Brusini P.
        Comparison of iCare tonometer and Goldmann applanation tonometry in normal corneas and in eyes with automated lamellar and penetrating keratoplasty.
        Eye. 2011; 25: 642-650
        • Li B.Z.
        • Hong J.
        • Peng R.M.
        • Wang X.
        • Ren J.
        Wu LL.
        Zhonghua Yan Ke Za Zhi. 2013; 49: 257-262
        • Satitpitakul V.
        • Taweekitikul P.
        • Puangsricharern V.
        • Kasetsuwan N.
        • Reinprayoon U.
        • Kittipibul T.
        • et al.
        Alteration of corneal biomechanical properties in patients with dry eye disease.
        PLoS ONE. 2021; 16e0254442
        • Kang J.M.
        • Tanna A.P.
        Glaucoma.
        Med Clin North Am. 2021; 105: 493-510