Advertisement

Centration assessment of an extended depth of focus contact lens for myopic progression control

  • Giulia Carlotta Rizzo
    Affiliations
    University of Milano-Bicocca, Department of Materials Science, Milan, Italy

    University of Milano-Bicocca, COMiB Research Centre in Optics and Optometry, Milan, Italy
    Search for articles by this author
  • Assunta Di Vizio
    Affiliations
    Degree Course in Optics and Optometry, Department of Sciences. Roma TRE University, Rome, Italy
    Search for articles by this author
  • Francesco Versaci
    Affiliations
    R&D Department, Costruzione Strumenti Oftalmici (CSO), Florence, Italy
    Search for articles by this author
  • Katarzyna Przekoracka
    Affiliations
    Laboratory of Bionics and Experimental Medical Biology, Department of Bionics and Bioimpendance, University of Medical Sciences, Poznań, Poland

    Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
    Search for articles by this author
  • Silvia Tavazzi
    Affiliations
    University of Milano-Bicocca, Department of Materials Science, Milan, Italy

    University of Milano-Bicocca, COMiB Research Centre in Optics and Optometry, Milan, Italy
    Search for articles by this author
  • Fabrizio Zeri
    Correspondence
    Corresponding author at: University of Milano-Bicocca, Department of Materials Science, via R. Cozzi 55, I-20125 Milan, Italy.
    Affiliations
    University of Milano-Bicocca, Department of Materials Science, Milan, Italy

    University of Milano-Bicocca, COMiB Research Centre in Optics and Optometry, Milan, Italy

    College of Health and Life Sciences, Aston University, Birmingham, UK
    Search for articles by this author
Published:November 06, 2021DOI:https://doi.org/10.1016/j.clae.2021.101533

      Abstract

      Purpose

      To evaluate the accuracy and the inter and intra-observer reliability of the centration assessment of extended depth of focus (EDOF) contact lenses (CL) using corneal topography.

      Method

      EDOF soft CLs (Mylo, Mark’Ennovy) were fitted on thirty-three myopic students (25 females), aged 19–28 years (22.7 ± 2.0 years). For any EDOF CL, a topography over the CL and a slit lamp (SL) digital picture were taken in random order. For the topographic images, the position of the EDOF CL centre, with respect to the pupil centre, was detected by two different practitioners (one newly graduated and one with more than 20 years of clinical experience respectively) and repeated after 15 days. This measurement was compared to the one taken through the SL, considered as the gold standard, and assessed using the instrument software.

      Results

      EDOF CLs resulted decentred inferiorly and temporally ranging, in the case of slit lamp assessment, between −0.27 ± 0.19 and 0.22 ± 0.23 mm horizontally and between −0.12 ± 0.31 and −0.17 ± 0.34 mm vertically, for the right and left eye respectively. The accuracy of the topographic assessment in determining EDOF CL centration was found to be very good compared to the SL assessment. No differences were found for the left eye, whereas in the right eye, a less temporally decentred position of the CL was detected by the topographical method (p < 0.05). However, this difference appeared clinically negligible (0.14 ± 0.22 mm). Inter-observer reliability (the differences between the two practitioners in assessing the EDOF centre) resulted significant only for the vertical coordinates of the centre position (p < 0.05). Concerning intra-observer reliability, better coefficient of precision and reliability between measurements within the same session were achieved by the more experienced practitioner, as well as a better level of the intraclass correlation coefficient in test–retest.

      Conclusion

      The centration of the EDOF CL investigated in this study can be accurately detected by a corneal topography performed over CLs. Inter-observer reliability resulted good whereas the intra-observer reliability resulted partially affected by the level of clinical experience of the practitioner.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Holden B.A.
        • Fricke T.R.
        • Wilson D.A.
        • Jong M.
        • Naidoo K.S.
        • Sankaridurg P.
        • et al.
        Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050.
        Ophthalmology. 2016; 123: 1036-1042https://doi.org/10.1016/j.ophtha.2016.01.006
        • Brown N.A.
        • Hill A.R.
        Cataract: the relation between myopia and cataract morphology.
        Br J Ophthalmol. 1987; 71: 405-414https://doi.org/10.1136/bjo.71.6.405
        • Flitcroft D.I.
        The complex interactions of retinal, optical and environmental factors in myopia aetiology.
        Prog Retin Eye Res. 2012; 31: 622-660https://doi.org/10.1016/j.preteyeres.2012.06.004
        • Hayashi K.
        • Ohno-Matsui K.
        • Shimada N.
        • Moriyama M.
        • Kojima A.
        • Hayashi W.
        • et al.
        Long-term Pattern of Progression of Myopic Maculopathy.
        Ophthalmology. 2010; 117: 1595-1611.e4https://doi.org/10.1016/j.ophtha.2009.11.003
        • Verkicharla P.K.
        • Ohno-Matsui K.
        • Saw S.M.
        Current and predicted demographics of high myopia and an update of its associated pathological changes.
        Ophthalmic Physiol Opt. 2015; 35: 465-475https://doi.org/10.1111/opo.2015.35.issue-510.1111/opo.12238
        • Wu P.-C.
        • Tsai C.-L.
        • Wu H.-L.
        • Yang Y.-H.
        • Kuo H.-K.
        Outdoor Activity during Class Recess Reduces Myopia Onset and Progression in School Children.
        Ophthalmology. 2013; 120: 1080-1085https://doi.org/10.1016/j.ophtha.2012.11.009
        • Dirani M.
        • Tong L.
        • Gazzard G.
        • Zhang X.
        • Chia A.
        • Young T.L.
        • et al.
        Outdoor activity and myopia in Singapore teenage children.
        Br J Ophthalmol. 2009; 93: 997-1000https://doi.org/10.1136/bjo.2008.150979
        • Jones-Jordan L.A.
        • Mitchell G.L.
        • Cotter S.A.
        • Kleinstein R.N.
        • Manny R.E.
        • Mutti D.O.
        • et al.
        Visual Activity before and after the Onset of Juvenile Myopia.
        Investig Opthalmology Vis Sci. 2011; 52: 1841https://doi.org/10.1167/iovs.09-4997
      1. Guo Y, Liu LJ, Xu L, Tang P, Lv YY, Feng Y, et al. Myopic Shift and Outdoor Activity among Primary School Children: One-Year Follow-Up Study in Beijing. PLoS One 2013;8:e75260-undefined. https://doi.org/10.1371/journal.pone.0075260.

        • Zeri F.
        • Pitzalis S.
        • Di vizio A.
        • Ruffinatto T.
        • Egizi F.
        • Di russo F.
        • et al.
        Refractive error and vision correction in a general sports-playing population.
        Clin Exp Optom. 2018; 101: 225-236https://doi.org/10.1111/cxo.12626
        • Walline J.J.
        • Jones L.A.
        • Sinnott L.T.
        Corneal reshaping and myopia progression.
        Br J Ophthalmol. 2009; 93: 1181-1185https://doi.org/10.1136/bjo.2008.151365
        • Cho P.
        • Cheung S.-W.
        Retardation of Myopia in Orthokeratology (ROMIO) Study: A 2-Year Randomized Clinical Trial.
        Investig Opthalmology Vis Sci. 2012; 53: 7077-7085https://doi.org/10.1167/iovs.12-10565
        • Chen C.
        • Cheung S.W.
        • Cho P.
        Myopia Control Using Toric Orthokeratology (TO-SEE Study).
        Investig Opthalmology Vis Sci. 2013; 54: 6510-6517https://doi.org/10.1167/iovs.13-12527
        • Tan D.
        • Lam D.
        • Chua W.
        • Shuping D.
        • Crockett R.
        One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia.
        Ophthalmology. 2005; 112: 84-91https://doi.org/10.1016/j.ophtha.2004.06.038
        • Chua W.-H.
        • Balakrishnan V.
        • Chan Y.-H.
        • Tong L.
        • Ling Y.
        • Quah B.-L.
        • et al.
        Atropine for the Treatment of Childhood Myopia.
        Ophthalmology. 2006; 113: 2285-2291https://doi.org/10.1016/j.ophtha.2006.05.062
        • Siatkowski R.M.
        • Cotter S.A.
        • Crockett R.S.
        • Miller J.M.
        • Novack G.D.
        • Zadnik K.
        Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2%pirenzepineophthalmicgelinchildrenwithmyopia.
        J Am Assoc Pediatr Ophthalmol Strabismus. 2008; 12: 332-339https://doi.org/10.1016/j.jaapos.2007.10.014
        • Chia A.
        • Lu Q.-S.
        • Tan D.
        Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2.
        Ophthalmology. 2016; 123: 391-399https://doi.org/10.1016/j.ophtha.2015.07.004
        • Yam J.C.
        • Jiang Y.
        • Tang S.M.
        • Law A.K.P.
        • Chan J.J.
        • Wong E.
        • et al.
        Low-Concentration Atropine for Myopia Progression (LAMP) Study.
        Ophthalmology. 2019; 126: 113-124https://doi.org/10.1016/j.ophtha.2018.05.029
        • Gwiazda J.
        • Hyman L.
        • Hussein M.
        • Everett D.
        • Norton T.T.
        • Kurtz D.
        • et al.
        A Randomized Clinical Trial of Progressive Addition Lenses versus Single Vision Lenses on the Progression of Myopia in Children.
        Investig Opthalmology Vis Sci. 2003; 44: 1492https://doi.org/10.1167/iovs.02-0816
        • Chamberlain P.
        • Peixoto-de-Matos S.C.
        • Logan N.S.
        • Ngo C.
        • Jones D.
        • Young G.
        A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control.
        Optom Vis Sci. 2019; 96: 556-567https://doi.org/10.1097/OPX.0000000000001410
        • Walline J.J.
        • Walker M.K.
        • Mutti D.O.
        • Jones-Jordan L.A.
        • Sinnott L.T.
        • Giannoni A.G.
        • et al.
        Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children.
        JAMA. 2020; 324: 571https://doi.org/10.1001/jama.2020.10834
        • Smith E.L.
        • Kee C.-s.
        • Ramamirtham R.
        • Qiao-Grider Y.
        • Hung L.-F.
        Peripheral Vision Can Influence Eye Growth and Refractive Development in Infant Monkeys.
        Investig Opthalmology Vis Sci. 2005; 46: 3965https://doi.org/10.1167/iovs.05-0445
        • Smith E.L.
        • Hung L.-F.
        • Huang J.
        Relative peripheral hyperopic defocus alters central refractive development in infant monkeys.
        Vision Res. 2009; 49: 2386-2392https://doi.org/10.1016/j.visres.2009.07.011
        • Lin Z.
        • Martinez A.
        • Chen X.
        • Li L.i.
        • Sankaridurg P.
        • Holden B.A.
        • et al.
        Peripheral Defocus with Single-Vision Spectacle Lenses in Myopic Children.
        Optom Vis Sci. 2010; 87: 4-9https://doi.org/10.1097/OPX.0b013e3181c078f1
        • Sankaridurg P.R.
        • Holden B.A.
        Practical applications to modify and control the development of ametropia.
        Eye. 2014; 28: 134-141https://doi.org/10.1038/eye.2013.255
        • Kang P.
        • Fan Y.
        • Oh K.
        • Trac K.
        • Zhang F.
        • Swarbrick H.A.
        The Effect of Multifocal Soft Contact Lenses on Peripheral Refraction.
        Optom Vis Sci. 2013; 90: 658-666https://doi.org/10.1097/OPX.0b013e3182990878
        • Sankaridurg P.
        • Holden B.
        • Smith E.
        • Naduvilath T.
        • Chen X.
        • de la Jara P.L.
        • et al.
        Decrease in Rate of Myopia Progression with a Contact Lens Designed to Reduce Relative Peripheral Hyperopia: One-Year Results.
        Investig Opthalmology Vis Sci. 2011; 52: 9362https://doi.org/10.1167/iovs.11-7260
        • Aller T.A.
        • Liu M.
        • Wildsoet C.F.
        Myopia Control with Bifocal Contact Lenses.
        Optom Vis Sci. 2016; 93: 344-352https://doi.org/10.1097/OPX.0000000000000808
        • Walline J.J.
        • Greiner K.L.
        • McVey M.E.
        • Jones-Jordan L.A.
        Multifocal Contact Lens Myopia Control.
        Optom Vis Sci. 2013; 90: 1207-1214https://doi.org/10.1097/OPX.0000000000000036
        • Lam C.S.Y.
        • Tang W.C.
        • Tse D.-Y.
        • Tang Y.Y.
        • To C.H.
        Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial.
        Br J Ophthalmol. 2014; 98: 40-45https://doi.org/10.1136/bjophthalmol-2013-303914
        • Pauné J.
        • Morales H.
        • Armengol J.
        • Quevedo L.
        • Faria-Ribeiro M.
        • González-Méijome J.M.
        Myopia Control with a Novel Peripheral Gradient Soft Lens and Orthokeratology: A 2-Year Clinical Trial.
        Biomed Res Int. 2015; 2015: 1-10https://doi.org/10.1155/2015/507572
        • Anstice N.S.
        • Phillips J.R.
        Effect of Dual-Focus Soft Contact Lens Wear on Axial Myopia Progression in Children.
        Ophthalmology. 2011; 118: 1152-1161https://doi.org/10.1016/j.ophtha.2010.10.035
        • Ruiz-Pomeda A.
        • Pérez-Sánchez B.
        • Valls I.
        • Prieto-Garrido F.L.
        • Gutiérrez-Ortega R.
        • Villa-Collar C.
        MiSight Assessment Study Spain (MASS). A 2-year randomized clinical trial.
        Graefe’s Arch Clin Exp Ophthalmol. 2018; 256: 1011-1021https://doi.org/10.1007/s00417-018-3906-z
        • Ruiz-Pomeda A.
        • Villa-Collar C.
        Slowing the Progression of Myopia in Children with the MiSight Contact Lens: A Narrative Review of the Evidence.
        Ophthalmol Ther. 2020; 9: 783-795https://doi.org/10.1007/s40123-020-00298-y
        • Sankaridurg P.
        • Bakaraju R.C.
        • Naduvilath T.
        • Chen X.
        • Weng R.
        • Tilia D.
        • et al.
        Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial.
        Ophthalmic Physiol Opt. 2019; 39: 294-307https://doi.org/10.1111/opo.2019.39.issue-410.1111/opo.12621
      2. U.S. Food and Drugs Administration. FDA approves first contact lens indicated to slow the progression of nearsightedness in children 2019. https://www.fda.gov/news-events/press-announcements/fda-approves-first-contact-lens-indicated-slow-progression-nearsightedness-children/ 2019; [15 November 2019]. (accessed April 10, 2021).

        • Zeri F.
        • Durban J.J.
        • Hidalgo F.
        • Gispets J.
        Attitudes towards contact lenses: A comparative study of teenagers and their parents.
        Contact Lens Anterior Eye. 2010; 33: 119-123https://doi.org/10.1016/j.clae.2009.12.009
        • Walline J.J.
        • Gaume A.
        • Jones L.A.
        • Rah M.J.
        • Manny R.E.
        • Berntsen D.A.
        • et al.
        Benefits of Contact Lens Wear for Children and Teens.
        Eye Contact Lens Sci Clin Pract. 2007; 33: 317-321https://doi.org/10.1097/ICL.0b013e31804f80fb
        • Remón L.
        • Pérez-Merino P.
        • Macedo-de-Araújo R.J.
        • Amorim-de-Sousa A.I.
        • González-Méijome J.M.
        Bifocal and Multifocal Contact Lenses for Presbyopia and Myopia Control.
        J Ophthalmol. 2020; 2020: 1-18https://doi.org/10.1155/2020/8067657
        • Przekoracka K.
        • Michalak K.
        • Olszewski J.
        • Zeri F.
        • Michalski A.
        • Paluch J.
        • et al.
        Contrast sensitivity and visual acuity in subjects wearing multifocal contact lenses with high additions designed for myopia progression control.
        Contact Lens Anterior Eye. 2020; 43: 33-39https://doi.org/10.1016/j.clae.2019.12.002
        • García‐Marqués J.V.
        • Macedo‐De‐Araújo R.J.
        • Cerviño A.
        • García‐Lázaro S.
        • McAlinden C.
        • González‐Méijome J.M.
        Comparison of short-term light disturbance, optical and visual performance outcomes between a myopia control contact lens and a single-vision contact lens.
        Ophthalmic Physiol Opt. 2020; 40: 718-727https://doi.org/10.1111/opo.v40.610.1111/opo.12729
        • Ruiz-Pomeda A.
        • Fernandes P.
        • Amorim-de-Sousa A.
        • González-Méijome J.M.
        • Prieto-Garrido F.L.
        • Pérez-Sánchez B.
        • et al.
        Light disturbance analysis in the controlled randomized clinical trial MiSight® Assessment Study Spain (MASS).
        Contact Lens Anterior Eye. 2019; 42: 200-205https://doi.org/10.1016/j.clae.2018.11.006
        • Diec J.
        • Tilia D.
        • Thomas V.
        • Bakaraju R.C.
        Predicting Short-Term Subjective Vision Performance of Contact Lenses Used in Myopia Control.
        Eye Contact Lens Sci Clin Pract. 2018; 44: 308-315https://doi.org/10.1097/ICL.0000000000000460
        • Kropacz-Sobkowiak S.
        • Przekoracka-Krawczyk A.
        • Michalak K.
        • Michalski A.
        • Kujawa K.
        • Olszewski J.
        The influence of high addition soft multifocal contact lenses on visual performance.
        Klin Oczna. 2020; 122: 92-99https://doi.org/10.5114/ko.2020.94754
        • Sha J.
        • Tilia D.
        • Diec J.
        • Fedtke C.
        • Yeotikar N.
        • Jong M.
        • et al.
        Visual performance of myopia control soft contact lenses in non-presbyopic myopes.
        Clin Optom. 2018; 10: 75-86https://doi.org/10.2147/OPTO.S167297
        • Kollbaum P.S.
        • Jansen M.E.
        • Tan J.
        • Meyer D.M.
        • Rickert M.E.
        Vision Performance With a Contact Lens Designed to Slow Myopia Progression.
        Optom Vis Sci. 2013; 90: 205-214https://doi.org/10.1097/OPX.0b013e3182812205
        • Pauné J.
        • Queiros A.
        • Quevedo L.
        • Neves H.
        • Lopes-Ferreira D.
        • González-Méijome J.M.
        Peripheral myopization and visual performance with experimental rigid gas permeable and soft contact lens design.
        Contact Lens Anterior Eye. 2014; 37: 455-460https://doi.org/10.1016/j.clae.2014.08.001
        • Kollbaum P.S.
        • Dietmeier B.M.
        • Jansen M.E.
        • Rickert M.E.
        Quantification of Ghosting Produced With Presbyopic Contact Lens Correction.
        Eye Contact Lens Sci Clin Pract. 2012; 38: 252-259https://doi.org/10.1097/ICL.0b013e31825aa879
        • Charman W.N.
        Developments in the correction of presbyopia I: spectacle and contact lenses.
        Ophthalmic Physiol Opt. 2014; 34: 8-29https://doi.org/10.1111/opo.12091
        • Woods R.L.
        • Saunders J.E.
        • Port M.J.A.
        Optical Performance of Decentered Bifocal Contact Lenses.
        Optom Vis Sci. 1993; 70: 171-184https://doi.org/10.1097/00006324-199303000-00001
        • Applegate R.A.
        • Thibos L.N.
        • Bradley A.
        • Marcos S.
        • Roorda A.
        • Salmon T.O.
        • et al.
        Reference axis selection: subcommittee report of the OSA Working Group to establish standards for measurement and reporting of optical aberrations of the eye.
        J Refract Surg. 2000; 16https://doi.org/10.3928/1081-597X-20000901-35
        • Belda-Salmerón L.
        • Drew T.
        • Hall L.
        • Wolffsohn J.S.
        Objective analysis of contact lens fit.
        Contact Lens Anterior Eye. 2015; 38: 163-167https://doi.org/10.1016/j.clae.2015.01.006
        • Wolffsohn J.S.
        • Hunt O.A.
        • Basra A.K.
        Simplified recording of soft contact lens fit.
        Contact Lens Anterior Eye. 2009; 32: 37-42https://doi.org/10.1016/j.clae.2008.12.004
        • Fedtke C.
        • Ehrmann K.
        • Thomas V.
        • Bakaraju R.C.
        Association between multifocal soft contact lens decentration and visual performance.
        Clin Optom. 2016; 8https://doi.org/10.2147/OPTO.S108528
        • Vincent S.J.
        • Collins M.J.
        A topographical method to quantify scleral contact lens decentration.
        Contact Lens Anterior Eye. 2019; 42: 462-466https://doi.org/10.1016/j.clae.2019.04.005
        • Zeri F.
        • Di Vizio A.
        • Guida M.
        • Rotondi A.
        • Tavazzi S.
        • Naroo S.A.
        Accuracy, inter-observer and intra-observer reliability in topography assessment of multifocal contact lens centration.
        Contact Lens Anterior Eye. 2020; 43: 448-457https://doi.org/10.1016/j.clae.2020.02.008
        • Zeri F.
        • Rossetti A.
        • Fossetti A.
        • Calossi A.
        Ottica Visuale.
        SEU, Punti e assi di riferimento degli occhi. Rome2012
        • Bland M.
        Statistica Medica.
        Apogeo Editore, Milano2009
        • Koo T.K.
        • Li M.Y.
        A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research.
        J Chiropr Med. 2016; 15: 155-163https://doi.org/10.1016/j.jcm.2016.02.012
        • Landis J.R.
        • Koch G.G.
        The Measurement of Observer Agreement for Categorical Data.
        Biometrics. 1977; 33: 159-174https://doi.org/10.2307/2529310
        • Wolffsohn J.S.
        • Calossi A.
        • Cho P.
        • Gifford K.
        • Jones L.
        • Li M.
        • et al.
        Global trends in myopia management attitudes and strategies in clinical practice.
        Contact Lens Anterior Eye. 2016; 39: 106-116https://doi.org/10.1016/j.clae.2016.02.005
        • Monsálvez‐Romín D.
        • Domínguez‐Vicent A.
        • García‐Lázaro S.
        • Esteve‐Taboada J.J.
        • Cerviño A.
        Power profiles in multifocal contact lenses with variable multifocal zone.
        Clin Exp Optom. 2018; 101: 57-63https://doi.org/10.1111/cxo.12575