Stabilization of comfort and visual quality after the insertion of soft contact lenses

Published:August 06, 2021DOI:


      • Visual acuity is stabilized 10 minutes after soft contact lens insertion.
      • in vivo wettability is stabilized 10 minutes after soft contact lens insertion.
      • Comfort keeps increasing during 30 minutes after soft contact lens insertion.



      To evaluate comfort, visual function, and in vivo wettability after the insertion of hydrogel and silicone hydrogel contact lenses for a better understanding of how long practitioners should wait for the initial evaluation of soft contact lenses.


      A short-term prospective, contralateral, randomized, and participant-masked study was carried out. Twenty healthy participants (25.4 ± 2.6 years) were evaluated after the insertion of two different soft contact lenses at different times (1, 5, 10, 20, 30 min). Ocufilcon D (hydrogel) and Somofilcon A (silicone hydrogel) contact lenses were randomly assigned to both eyes of the same participant. Comfort, visual function under photopic conditions in terms of high-contrast visual acuity, low-contrast visual acuity, contrast sensitivity, and in vivo wettability were measured.


      There was an increase in comfort (p < 0.001), high-contrast visual acuity (p < 0.05), and contrast sensitivity (p < 0.001, only with silicone hydrogel) directly related to time after contact lens insertion. Besides, in vivo wettability suffered a statistically significant deterioration directly related to time with both contact lenses (p < 0.05). Except for comfort and contrast sensitivity, all the parameters stabilized their values 10 min after the insertion of both soft contact lenses. Additionally, in vivo wettability and visual acuity differences were found between hydrogel and silicone hydrogel contact lenses (p < 0.05).


      It would be possible to properly evaluate high-contrast visual acuity, low-contrast visual acuity, and in vivo wettability 10 min after the insertion of both soft contact lenses.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Pucker A.D.
        • Tichenor A.A.
        A review of contact lens dropout.
        Clin Optom (Auckl). 2020; 12: 85-94
        • Brennan N.A.
        • Lindsay R.G.
        • McCraw K.
        • Young L.
        • Bruce A.S.
        • Golding T.R.
        Soft lens movement: temporal characteristics.
        Optometry Vision Sci. 1994; 71: 359-363
        • Schwallie J.D.
        • Bauman R.E.
        Fitting characteristics of Dailies daily disposable hydrogel contact lenses.
        CLAO J. 1998; 24: 102-106
        • Boychev N.
        • Laughton D.S.
        • Bharwani G.
        • Ghuman H.
        • Wolffsohn J.S.
        How should initial fit inform soft contact lens prescribing.
        Cont Lens Anterior Eye. 2016; 39: 227-233
        • Dumbleton K.A.
        • Woods C.A.
        • Jones L.W.
        • Fonn D.
        Comfort and adaptation to silicone hydrogel lenses for daily wear.
        Eye Contact Lens. 2008; 34: 215-223
        • Ozkan J.
        • Papas E.
        Lubricant effects on low Dk and silicone hydrogel lens comfort.
        Optometry Vision Sci. 2008; 85: 773-777
        • Varikooty J.
        • Keir N.
        • Richter D.
        • Jones L.W.
        • Woods C.
        • Fonn D.
        Comfort response of three silicone hydrogel daily disposable contact lenses.
        Optom Vis Sci. 2013; 90: 945-953
        • Woods C.A.
        • Bentley S.A.
        • Fonn D.
        Temporal changes in contact lens comfort over a day of wear.
        Ophthalmic Physiol Opt. 2016; 36: 643-648
      1. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. Jama 2013;310(20):2191-4. doi: 10.1001/jama.2013.281053.

        • McMonnies C.
        • Ho A.
        • Wakefield D.
        Optimum dry eye classification using questionnaire responses.
        Adv Exp Med Biol. 1998; 438: 835-838
        • Paul-Dauphin A.
        • Guillemin F.
        • Virion J.-M.
        • Briancon S.
        Bias and precision in visual analogue scales: a randomized controlled trial.
        Am J Epidemiol. 1999; 150: 1117-1127
        • Alonso-Caneiro D.
        • Turuwhenua J.
        • Iskander D.R.
        • Collins M.J.
        Diagnosing dry eye with dynamic-area high-speed videokeratoscopy.
        J Biomed Opt. 2011; 16: 076012
      2. Fonn D, Dumbleton K. Dryness and discomfort with silicone hydrogel contact lenses. Eye & contact lens 2003;29(1 Suppl):S101-4; discussion S15-8, S92-4.

        • Cheung S.W.
        • Cho P.
        • Chan B.
        • Choy C.
        • Ng V.
        A comparative study of biweekly disposable contact lenses: silicone hydrogel versus hydrogel.
        Clin Exp Optometry. 2007; 90: 124-131
        • Santodomingo-Rubido J.
        • Barrado-Navascues E.
        • Rubido-Crespo M.J.
        Ocular surface comfort during the day assessed by instant reporting in different types of contact and non-contact lens wearers.
        Eye Contact Lens. 2010; 36: 96-100
        • Maissa C.
        • Guillon M.
        • Garofalo R.J.
        Contact lens-induced circumlimbal staining in silicone hydrogel contact lenses worn on a daily wear basis.
        Eye Contact Lens. 2012; 38: 16-26
        • Marx S.
        • Sickenberger W.
        A novel in-vitro method for assessing contact lens surface dewetting: non-invasive keratograph dry-up time (NIK-DUT).
        Cont Lens Anterior Eye. 2017; 40: 382-388
        • Alonso-Caneiro D.
        • Iskander D.R.
        • Collins M.J.
        Tear film surface quality with soft contact lenses using dynamic-area high-speed videokeratoscopy.
        Eye Contact Lens. 2009; 35: 227-231
        • Szczesna-Iskander D.H.
        • Iskander D.R.
        • Read S.A.
        • Alonso-Caneiro D.
        Noninvasive in vivo assessment of soft contact lens type on tear film surface quality.
        Invest Ophthalmol Vis Sci. 2012; 53: 525-531
      3. Hong J, Sun X, Wei A, Cui X, Li Y, Qian T, et al. Assessment of tear film stability in dry eye with a newly developed keratograph. Cornea 2013;32(5):716-21. doi: 10.1097/ICO.0b013e3182714425.

        • Bandlitz S.
        • Peter B.
        • Pflugi T.
        • Jaeger K.
        • Anwar A.
        • Bikhu P.
        • et al.
        Agreement and repeatability of four different devices to measure non-invasive tear breakup time (NIBUT).
        Cont Lens Anterior Eye. 2020; 43: 507-511
        • García-Montero M.
        • Rico-Del-Viejo L.
        • Lorente-Velázquez A.
        • Martínez-Alberquilla I.
        • Hernández-Verdejo J.L.
        • Madrid-Costa D.
        Repeatability of noninvasive keratograph 5M measurements associated with contact lens wear.
        Eye Contact Lens. 2019; 45: 377-381
        • Willcox M.
        • Keir N.
        • Maseedupally V.
        • Masoudi S.
        • McDermott A.
        • Mobeen R.
        • et al.
        CLEAR – contact lens wettability, cleaning, disinfection and interactions with tears.
        Cont Lens Anterior Eye. 2021; 44: 157-191
        • Itokawa T.
        • Suzuki T.
        • Iwashita H.
        • Hori Y.
        Comparison and evaluation of prelens tear film stability by different noninvasive in vivo methods.
        Clin Ophthalmol. 2020; 14: 4459-4468
        • Truong T.N.
        • Graham A.D.
        • Lin M.C.
        Factors in contact lens symptoms: evidence from a multistudy database.
        Optometry Vision Sci. 2014; 91: 133-141
        • Guillon M.
        • Dumbleton K.A.
        • Theodoratos P.
        • Wong S.
        • Patel K.
        • Banks G.
        • et al.
        Association between contact lens discomfort and pre-lens tear film kinetics.
        Optom Vis Sci. 2016; 93: 881-891
        • Vidal-Rohr M.
        • Wolffsohn J.S.
        • Davies L.N.
        • Cerviño A.
        Effect of contact lens surface properties on comfort, tear stability and ocular physiology.
        Cont Lens Anterior Eye. 2018; 41: 117-121
      4. Jones L, Brennan NA, Gonzalez-Meijome J, Lally J, Maldonado-Codina C, Schmidt TA, et al. The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens materials, design, and care subcommittee. Investigative Ophthalmol Visual Sci 2013;54(11):Tfos37-70. doi: 10.1167/iovs.13-13215.

        • Montes-Mico R.
        • Alio J.L.
        • Charman W.N.
        Dynamic changes in the tear film in dry eyes.
        Invest Ophthalmol Vis Sci. 2005; 46: 1615-1619
        • Benito A.
        • Perez G.M.
        • Mirabet S.
        • Vilaseca M.
        • Pujol J.
        • Marin J.M.
        • et al.
        Objective optical assessment of tear-film quality dynamics in normal and mildly symptomatic dry eyes.
        J Cataract Refract Surg. 2011; 37: 1481-1487
        • Villegas E.A.
        • Alcon E.
        • Artal P.
        Optical quality of the eye in subjects with normal and excellent visual acuity.
        Invest Ophthalmol Vis Sci. 2008; 49: 4688-4696
        • Kolbe O.
        • Zimmermann F.
        • Marx S.
        • Sickenberger W.
        Introducing a novel in vivo method to access visual performance during dewetting process of contact lens surface.
        Cont Lens Anterior Eye. 2020; 43: 359-365