Advertisement

Differential gene expression of the healthy conjunctiva during the day

  • Heba Alenezi
    Correspondence
    Corresponding author at: School of Optometry and Vision Science, The University of New South Wales, Sydney 2033, NSW, Australia.
    Affiliations
    School of Optometry and Vision Science, The University of New South Wales, Sydney 2033, NSW, Australia

    College of Applied Medical Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
    Search for articles by this author
  • Jerome Ozkan
    Affiliations
    School of Optometry and Vision Science, The University of New South Wales, Sydney 2033, NSW, Australia
    Search for articles by this author
  • Mark Willcox
    Affiliations
    School of Optometry and Vision Science, The University of New South Wales, Sydney 2033, NSW, Australia
    Search for articles by this author
  • Grant Parnell
    Affiliations
    Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, NSW, Australia
    Search for articles by this author
  • Nicole Carnt
    Affiliations
    School of Optometry and Vision Science, The University of New South Wales, Sydney 2033, NSW, Australia

    Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, NSW, Australia

    Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
    Search for articles by this author

      Abstract

      Purpose

      To determine if there is diurnal variation in gene expression in normal healthy conjunctival cells.

      Methods

      Bulbar conjunctival swab samples were collected from four healthy subjects in the morning and evening of the same day. The two swab samples were taken from one eye of each participant, with a minimum of five hours gap between the two samples. RNA was extracted and analysed using RNA sequencing (RNA-Seq).

      Results

      A total of 121 genes were differentially expressed between the morning and the evening conjunctival samples, of which 94 genes were upregulated in the morning, and 27 genes were upregulated in the evening. Many of the genes that were upregulated in the morning were involved in defence, cell turnover and regulation of gene expression, while the genes upregulated in the evening were involved in signalling and mucin production.

      Conclusions

      This study has identified several genes whose expression changes over the course of the day. Knowledge of diurnal variations of conjunctival gene expression provides an insight into the regulatory status of the healthy eye and provides a baseline for examining changes during ocular surface disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References:

        • Turner H.C.
        • Budak M.T.
        • Akinci M.A.M.
        • Wolosin J.M.
        Comparative analysis of human conjunctival and corneal epithelial gene expression with oligonucleotide microarrays.
        Invest Ophthalmol Vis Sci. 2007; 48: 2050-2061
        • De Paiva C.S.
        • Raince J.K.
        • McClellan A.J.
        • Shanmugam K.P.
        • Pangelinan S.B.
        • Volpe E.A.
        • et al.
        Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13.
        Mucosal Immunol. 2011; 4: 397-408
        • Taurone S.
        • Spoletini M.
        • Ralli M.
        • Gobbi P.
        • Artico M.
        • Imre L.
        • et al.
        Ocular mucous membrane pemphigoid: a review.
        Immunol Res. 2019; 67: 280-289
        • Dartt D.A.
        Regulation of mucin and fluid secretion by conjunctival epithelial cells.
        Prog Retin Eye Res. 2002; 21: 555-576
        • Watanabe H.
        Significance of mucin on the ocular surface.
        Cornea. 2002; 21: S17-S22
        • Dartt D.A.
        • Willcox M.D.P.
        Complexity of the tear film: importance in homeostasis and dysfunction during disease.
        Exp Eye Res. 2013; 117: 1-3
        • Willcox M.D.P.
        • Argüeso P.
        • Georgiev G.A.
        • Holopainen J.M.
        • Laurie G.W.
        • Millar T.J.
        • et al.
        TFOS DEWS II Tear Film Report.
        Ocul Surf. 2017; 15: 366-403
        • Tamhane M.
        • Cabrera-Ghayouri S.
        • Abelian G.
        • Viswanath V.
        Review of biomarkers in ocular matrices: challenges and opportunities.
        Pharm Res. 2019; 36: 40
        • Sack R.A.
        • Beaton A.
        • Sathe S.
        • Morris C.
        • Willcox M.
        • Bogart B.
        Towards a closed eye model of the pre-ocular tear layer.
        Prog Retin Eye Res. 2000; 19: 649-668
        • Sack R.A.
        • Tan K.O.
        • Tan A.
        Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid.
        Invest Ophthalmol Vis Sci. 1992; 33: 626-640
        • Thakur A.
        • Willcox M.D.
        • Stapleton F.
        The proinflammatory cytokines and arachidonic acid metabolites in human overnight tears: homeostatic mechanisms.
        J Clin Immunol. 1998; 18: 61-70
        • Hirji N.K.
        • Scott J.
        • Sabell A.G.
        Diurnal variation of some cytological characteristics of the conjunctiva.
        Ophthalmic Physiol Opt. 1984; 4: 355-357
        • Duench S.
        • Simpson T.
        • Jones L.W.
        • Flanagan J.G.
        • Fonn D.
        Assessment of variation in bulbar conjunctival redness, temperature, and blood flow.
        Optom Vis Sci. 2007; 84: 511-516
        • Read S.A.
        • Alonso-Caneiro D.
        • Free K.A.
        • Labuc-Spoors E.
        • Leigh J.K.
        • Quirk C.J.
        • et al.
        Diurnal variation of anterior scleral and conjunctival thickness.
        Ophthalmic Physiol Opt. 2016; 36: 279-289
        • Read S.A.
        • Collins M.J.
        Diurnal variation of corneal shape and thickness.
        Optom Vis Sci. 2009; 86: 170-180
        • Willcox M.D.
        • Morris C.A.
        • Thakur A.
        • Sack R.A.
        • Wickson J.
        • Boey W.
        Complement and complement regulatory proteins in human tears.
        Invest Ophthalmol Vis Sci. 1997; 38: 1-8
      1. T. Derrick, A.M. Ramadhani, D. Macleod, P. Massae, E. Mafuru, M. Aiweda, K. Mbuya, W. Makupa, T. Mtuy, R.L. Bailey, D.C.W. Mabey, M.J. Holland, M.J. Burton, The immuno-pathogenesis of progressive scarring trachoma: results of a four-year longitudinal study in Tanzanian children, Infection and Immunity (2020) IAI.00629-19.

        • Chidambaram J.D.
        • Kannambath S.
        • Srikanthi P.
        • Shah M.
        • Lalitha P.
        • Elakkiya S.
        • et al.
        Persistence of innate immune pathways in late stage human bacterial and fungal keratitis: results from a comparative transcriptome analysis.
        Front Cell Infect Microbiol. 2017; 7https://doi.org/10.3389/fcimb.2017.00193
        • Derrick T.
        • Last A.R.
        • Burr S.E.
        • Roberts C.H.
        • Nabicassa M.
        • Cassama E.
        • et al.
        Inverse relationship between microRNA-155 and -184 expression with increasing conjunctival inflammation during ocular Chlamydia trachomatis infection.
        BMC Infect Dis. 2016; 16: 60
        • Burton M.J.
        • Bailey R.L.
        • Jeffries D.
        • Rajak S.N.
        • Adegbola R.A.
        • Sillah A.
        • et al.
        Conjunctival expression of matrix metalloproteinase and proinflammatory cytokine genes after trichiasis surgery.
        Invest Ophthalmol Vis Sci. 2010; 51: 3583https://doi.org/10.1167/iovs.09-4550
        • Ramadhani A.M.
        • Derrick T.
        • Macleod D.
        • Massae P.
        • Mtuy T.
        • Jeffries D.
        • et al.
        Immunofibrogenic gene expression patterns in Tanzanian children with ocular Chlamydia trachomatis infection, active trachoma and scarring: baseline results of a 4-year longitudinal study.
        Front Cell Infect Microbiol. 2017; 7https://doi.org/10.3389/fcimb.2017.00406
      2. V. Agostini, P. Bailo, E. Chiti, P. Linarello, G. Gentile, P. Primignani, M. Giriodi, A. Piccinini, Ocular swabs on exhumed bodies: An alternative to the collection of “classical” tissue samples in forensic genetics, Forensic Sci Int Genet 44 (2020) 102206-102206.

        • Broquet T.
        • Berset-Braendli L.
        • Emaresi G.
        • Fumagalli L.
        Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians.
        Conserv Genet. 2007; 8: 509-511
        • McDonnell J.M.
        • McDonnell P.J.
        • Sun Y.Y.
        Human papillomavirus DNA in tissues and ocular surface swabs of patients with conjunctival epithelial neoplasia.
        Invest Ophthalmol Vis Sci. 1992; 33: 184-189
        • Pickering H.
        • Palmer C.D.
        • Houghton J.
        • Makalo P.
        • Joof H.
        • Derrick T.
        • et al.
        Conjunctival microbiome-host responses are associated with impaired epithelial cell health in both early and late stages of trachoma.
        Front Cell Infect Microbiol. 2019; 9https://doi.org/10.3389/fcimb.2019.0029710.3389/fcimb.2019.00297.s001
        • Chen Y.
        • Lun A.T.L.
        • Smyth G.K.
        From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; peer review: 5 approved].
        F1000Research. 2016; 5: 1438https://doi.org/10.12688/f1000research10.12688/f1000research.8987.2
        • Mi H.
        • Muruganujan A.
        • Huang X.
        • Ebert D.
        • Mills C.
        • Guo X.
        • et al.
        Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0).
        Nat Protoc. 2019; 14: 703-721
        • Schroeder A.
        • Mueller O.
        • Stocker S.
        • Salowsky R.
        • Leiber M.
        • Gassmann M.
        • et al.
        The RIN: an RNA integrity number for assigning integrity values to RNA measurements.
        BMC Mol Biol. 2006; 7: 3
        • Ramachandran L.
        • Sharma S.
        • Sankaridurg P.R.
        • Vajdic C.M.
        • Chuck J.A.
        • Holden B.A.
        • et al.
        Examination of the conjunctival microbiota after 8 hours of eye closure.
        CLAO J. 1995; 21: 195-199
        • Goriki A.
        • Hatanaka F.
        • Myung J.
        • Kim J.K.
        • Yoritaka T.
        • Tanoue S.
        • et al.
        A novel protein, CHRONO, functions as a core component of the mammalian circadian clock.
        PLoS Biol. 2014; 12: e1001839
      3. Y. Yang, N. Li, J. Qiu, H. Ge, X. Qin, Identification of the repressive domain of the negative circadian clock component CHRONO, bioRxiv (2019) 754168.

        • Annayev Y.
        • Adar S.
        • Chiou Y.-Y.
        • Lieb J.D.
        • Sancar A.
        • Ye R.
        Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression.
        J Biol Chem. 2014; 289: 5013-5024
        • Rogers E.H.
        • Hunt J.A.
        • Pekovic-Vaughan V.
        Adult stem cell maintenance and tissue regeneration around the clock: do impaired stem cell clocks drive age-associated tissue degeneration?.
        Biogerontology. 2018; 19: 497-517
        • Matsuo T.
        • Yamaguchi S.
        • Mitsui S.
        • Emi A.
        • Shimoda F.
        • Okamura H.
        Control mechanism of the circadian clock for timing of cell division in vivo.
        Science. 2003; 302: 255-259
        • Gery S.
        • Komatsu N.
        • Baldjyan L.
        • Yu A.
        • Koo D.
        • Koeffler H.P.
        The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells.
        Mol Cell. 2006; 22: 375-382
        • Kowalska E.
        • Ripperger J.A.
        • Hoegger D.C.
        • Bruegger P.
        • Buch T.
        • Birchler T.
        • et al.
        NONO couples the circadian clock to the cell cycle.
        Proc Natl Acad Sci U S A. 2013; 110: 1592-1599
        • Anafi R.C.
        • Lee Y.
        • Sato T.K.
        • Venkataraman A.
        • Ramanathan C.
        • Kavakli I.H.
        • et al.
        Machine learning helps identify CHRONO as a circadian clock component.
        PLoS Biol. 2014; 12: e1001840
        • Stone R.A.
        • McGlinn A.M.
        • Baldwin D.A.
        • Tobias J.W.
        • Iuvone P.M.
        • Khurana T.S.
        Image defocus and altered retinal gene expression in chick: clues to the pathogenesis of ametropia.
        Invest Ophthalmol Vis Sci. 2011; 52: 5765-5777
        • Xue Y.
        • Liu P.
        • Wang H.
        • Xiao C.
        • Lin C.
        • Liu J.
        • et al.
        Modulation of circadian rhythms affects corneal epithelium renewal and repair in mice.
        Invest Ophthalmol Vis Sci. 2017; 58: 1865https://doi.org/10.1167/iovs.16-21154
        • Hergenhan S.
        • Holtkamp S.
        • Scheiermann C.
        Molecular interactions between components of the circadian clock and the immune system.
        J Mol Biol. 2020; 432: 3700-3713
        • Stepp M.W.
        • Folz R.J.
        • Yu J.
        • Zelko I.N.
        The c10orf10 gene product is a new link between oxidative stress and autophagy, Biochimica et Biophysica Acta (BBA) - Molecular.
        Cell Res. 2014; 1843: 1076-1088
        • Yang X.
        • Pan X.
        • Zhao X.
        • Luo J.
        • Xu M.
        • Bai D.
        • et al.
        Autophagy and age-related eye diseases.
        Biomed Res Int. 2019; 2019: 5763658
        • Mariño G.
        • Niso-Santano M.
        • Baehrecke E.H.
        • Kroemer G.
        Self-consumption: the interplay of autophagy and apoptosis.
        Nat Rev Mol Cell Biol. 2014; 15: 81-94
        • Zhou X.-J.
        • Zhang H.
        Autophagy in immunity.
        Autophagy. 2012; 8: 1286-1299
        • Latta L.
        • Ludwig N.
        • Krammes L.
        • Stachon T.
        • Fries F.N.
        • Mukwaya A.
        • et al.
        Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia.
        Ocul Surf. 2021; 19: 115-127
        • Bian F.
        • Liu W.
        • Yoon K.-C.
        • Lu R.
        • Zhou N.
        • Ma P.
        • et al.
        Molecular signatures and biological pathway profiles of human corneal epithelial progenitor cells.
        Int J Biochem Cell Biol. 2010; 42: 1142-1153
      4. B. Kornmann, N. Preitner, D. Rifat, F. Fleury-Olela, U. Schibler, Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs, Nucleic Acids Res 29(11) (2001) E51-e51.

        • Li H.
        • Yan R.
        • Chen W.
        • Ding X.
        • Liu J.
        • Chen G.
        • et al.
        Long non coding RNA SLC26A4-AS1 exerts antiangiogenic effects in human glioma by upregulating NPTX1 via NFKB1 transcriptional factor.
        The FEBS Journal. 2021; 288: 212-228
      5. J. Huang, Y.-J. Li, J.-Y. Liu, Y.-Y. Zhang, X.-M. Li, L.-N. Wang, J. Yao, Q. Jiang, B. Yan, Identification of corneal neovascularization–related long noncoding RNAs through microarray analysis, Cornea 34(5) (2015) 580-587.

        • Zhang L.
        • Dong Y.
        • Wang Y.
        • Gao J.
        • Lv J.
        • Sun J.
        • et al.
        Long non-coding RNAs in ocular diseases: new and potential therapeutic targets.
        The FEBS Journal. 2019; 286: 2261-2272
        • Cesana M.
        • Cacchiarelli D.
        • Legnini I.
        • Santini T.
        • Sthandier O.
        • Chinappi M.
        • et al.
        A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.
        Cell. 2011; 147: 358-369
        • Zhu W.
        • Meng Y.-F.
        • Xing Q.
        • Tao J.-J.
        • Lu J.
        • Wu Y.
        Identification of lncRNAs involved in biological regulation in early age-related macular degeneration.
        Int J Nanomedicine. 2017; 12: 7589-7602
        • Kallberg Y.
        • Oppermann U.
        • Persson B.
        Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models.
        The FEBS Journal. 2010; 277: 2375-2386
        • Albalat R.
        • Brunet F.
        • Laudet V.
        • Schubert M.
        Evolution of retinoid and steroid signaling: vertebrate diversification from an amphioxus perspective.
        Genome Biology and Evolution. 2011; 3: 985-1005
        • Oppermann U.C.T.
        • Filling C.
        • Jörnvall H.
        Forms and functions of human SDR enzymes.
        Chem Biol Interact. 2001; 130-132: 699-705
        • Schirra F.
        • Suzuki T.
        • Dickinson D.P.
        • Townsend D.J.
        • Gipson I.K.
        • Sullivan D.A.
        Identification of steroidogenic enzyme mRNAs in the human lacrimal gland, meibomian gland, cornea, and conjunctiva.
        Cornea. 2006; 25: 438-442
        • Mantelli F.
        • Moretti C.
        • Micera A.
        • Bonini S.
        Conjunctival mucin deficiency in complete androgen insensitivity syndrome (CAIS).
        Graefes Arch Clin Exp Ophthalmol. 2007; 245: 899-902
        • Sacchetti M.
        • Lambiase A.
        • Moretti C.
        • Mantelli F.
        • Bonini S.
        Sex hormones in allergic conjunctivitis: altered levels of circulating androgens and estrogens in children and adolescents with vernal keratoconjunctivitis.
        Journal of Immunology Research. 2015; 2015945317
        • Moore B.A.
        • Flenniken A.M.
        • Clary D.
        • Moshiri A.S.
        • Nutter L.M.J.
        • Berberovic Z.
        • et al.
        International mouse phenotyping, genome-wide screening of mouse knockouts reveals novel genes required for normal integumentary and oculocutaneous structure and function.
        Sci Rep. 2019; 9https://doi.org/10.1038/s41598-019-47286-2
      6. D.J. Devlin, S. Agrawal Zaneveld, K. Nozawa, X. Han, A.R. Moye, Q. Liang, J.M. Harnish, M.M. Matzuk, R. Chen, Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects †, Biology of Reproduction 102(6) (2020) 1234-1247.

        • Björk S.
        • Hurt C.M.
        • Ho V.K.
        • Angelotti T.
        • Behrens M.
        REEPs are membrane shaping adapter proteins that modulate specific g protein-coupled receptor trafficking by affecting ER cargo capacity.
        PLoS ONE. 2013; 8: e76366
        • Shibata Y.
        • Hu J.
        • Kozlov M.M.
        • Rapoport T.A.
        Mechanisms shaping the membranes of cellular organelles.
        Annu Rev Cell Dev Biol. 2009; 25: 329-354
        • Rahimi Darabad R.
        • Suzuki T.
        • Richards S.M.
        • Jakobiec F.A.
        • Zakka F.R.
        • Barabino S.
        • et al.
        Does estrogen deficiency cause lacrimal gland inflammation and aqueous-deficient dry eye in mice?.
        Exp Eye Res. 2014; 127: 153-160
        • Wang S.
        • Chen J.-Z.
        • Zhang Z.
        • Huang Q.
        • Gu S.
        • Ying K.
        • et al.
        Cloning, characterization, and expression of calcyphosine 2, a novel human gene encoding an EF-hand Ca(2+)-binding protein.
        Biochem Biophys Res Commun. 2002; 291: 414-420
        • Pan H.
        • Xiang H.
        • Wang J.
        • Wei Z.
        • Zhou Y.
        • Liu B.
        • et al.
        CAPS mutations are potentially associated with unexplained recurrent pregnancy loss.
        Am J Pathol. 2019; 189: 124-131
      7. R. Lecocq, F. Lamy, C. Erneux, J.E. Dumont, Rapid purification and identification of calcyphosine, a Ca(2+)-binding protein phosphorylated by protein kinase A, Biochem J 306 (Pt 1)(Pt 1) (1995) 147-51.

        • Radicioni G.
        • Cao R.
        • Carpenter J.
        • Ford A.A.
        • Wang T.T.
        • Li Y.
        • et al.
        The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome.
        Mucosal Immunol. 2016; 9: 1442-1454
        • Paz H.B.
        • Tisdale A.S.
        • Danjo Y.
        • Spurr-Michaud S.J.
        • Argüeso P.
        • Gipson I.K.
        The role of calcium in mucin packaging within goblet cells.
        Exp Eye Res. 2003; 77: 69-75
        • Shao W.
        • Wang Q.
        • Wang F.
        • Jiang Y.
        • Xu M.
        • Xu J.
        Abnormal expression of calcyphosine is associated with poor prognosis and cell biology function in colorectal cancer.
        Onco Targets Ther. 2016; 9: 477-487
        • Farkas M.H.
        • Grant G.R.
        • White J.A.
        • Sousa M.E.
        • Consugar M.B.
        • Pierce E.A.
        Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes.
        BMC Genomics. 2013; 14: 486https://doi.org/10.1186/1471-2164-14-486
        • Whitmore S.S.
        • Wagner A.H.
        • DeLuca A.P.
        • Drack A.V.
        • Stone E.M.
        • Tucker B.A.
        • et al.
        Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq.
        Exp Eye Res. 2014; 129: 93-106
        • Carnes M.U.
        • Allingham R.R.
        • Ashley-Koch A.
        • Hauser M.A.
        Transcriptome analysis of adult and fetal trabecular meshwork, cornea, and ciliary body tissues by RNA sequencing.
        Exp Eye Res. 2018; 167: 91-99
        • Booij J.C.
        • van Soest S.
        • Swagemakers S.MA.
        • Essing A.HW.
        • Verkerk A.JMH.
        • van der Spek P.J.
        • et al.
        Functional annotation of the human retinal pigment epithelium transcriptome.
        BMC Genomics. 2009; 10: 164https://doi.org/10.1186/1471-2164-10-164
        • Booij J.C.
        • ten Brink J.B.
        • Swagemakers S.M.A.
        • Verkerk A.J.M.H.
        • Essing A.H.W.
        • van der Spek P.J.
        • et al.
        A new strategy to identify and annotate human RPE-specific gene expression.
        PLoS ONE. 2010; 5: e9341