Advertisement

In vitro affinity for nicotine of soft contact lenses of different materials

  • Federica Miglio
    Affiliations
    University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy

    University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy
    Search for articles by this author
  • Erika Ponzini
    Correspondence
    Corresponding author.
    Affiliations
    University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy

    University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy
    Search for articles by this author
  • Fabrizio Zeri
    Affiliations
    University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy

    University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy

    School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
    Search for articles by this author
  • Alessandro Borghesi
    Affiliations
    University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy

    University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy
    Search for articles by this author
  • Silvia Tavazzi
    Affiliations
    University of Milano Bicocca, Materials Science Department, via R. Cozzi 55, I-20125 Milan, Italy

    University of Milano Bicocca, COMiB Research Center, via R. Cozzi 55, I-20125 Milan, Italy
    Search for articles by this author

      Abstract

      Smoking is a risk factor for the development of microbial keratitis and corneal infiltrates in contact lens (CL) wearers. It is still unknown if this risk is directly associated with the presence of nicotine in the eye and if adherence of nicotine on the CL can enhance these effects. A better understanding of the interaction between nicotine and CL materials could offer insights to explain this risk associated with smoking. The aim of this work was to compare the affinity of nicotine to different soft CL materials. CLs from FDA groups I, II, IV, and V were incubated in a 2-mM nicotine solution for 24 h and then in a 0.9% saline solution for the next 24 h. The amount of absorbed and released nicotine per CL was deduced as a function of time (t) by ultraviolet (UV) spectrophotometry and normalised to the mass of the hydrated CL. The data were described by the equation y = b –a t−1, where a and b are constants, and b represents the mass reached at the plateau after ~ 10 min of exposure. Groups IV and V displayed the highest (0.80 ± 0.09 µg) and lowest (0.27 ± 0.08 µg) nicotine absorption per mg of hydrated CL, respectively. The CL affinity for nicotine could be ascribed to the interaction between the positive charge of nicotine pyrrolidine nitrogen and the negative charges of the CLs, especially for the ionic IV group.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moreddu R.
        • Vigolo D.
        • Yetisen A.K.
        Contact lens technology: from fundamentals to applications.
        Adv Healthc Mater. 2019; 8e1900368https://doi.org/10.1002/adhm.201900368
        • Tavazzi S.
        • Rossi A.
        • Picarazzi S.
        • Ascagni M.
        • Farris S.
        • Borghesi A.
        Polymer-interaction driven diffusionof eyeshadow in soft contact lenses.
        Contact Lens Anterior Eye. 2017; 40: 335-339https://doi.org/10.1016/j.clae.2017.06.003
      1. Zeri F, Borghesi A, Acciarri M, Tavazzi S. Interaction between siloxane-hydrogel contact lenses and eye cosmetics: Aluminum as a marker of adsorbed mascara deposits. Polym Polym Compos 2020:0967391120922421. 10.1177/0967391120922421.

        • Ng A.
        • Evans K.
        • North R.
        • Purslow C.
        Eye cosmetic usage and associated ocular comfort.
        Ophthalmic Physiol Opt. 2012; 32: 501-507https://doi.org/10.1111/j.1475-1313.2012.00944.x
        • Malik A.
        • Claoué C.
        Transport and interaction of cosmetic product material within the ocular surface: beauty and the beastly symptoms of toxic tears.
        Contact Lens Anterior Eye. 2012; 35: 247-259https://doi.org/10.1016/j.clae.2012.07.005
        • Hosaka S.
        • Ozawa H.
        • Tanzawa H.
        • Ishida H.
        • Yoshimura K.
        • Momose T.
        • et al.
        Analysis of deposits on high water content contact lenses.
        J Biomed Mater Res. 1983; 17: 261-274https://doi.org/10.1002/jbm.820170205
        • Armstrong D.W.
        • Wang X.
        • Ercal N.
        Enantiomeric composition of nicotine in smokeless tobacco, medicinal products, and commercial reagents.
        Chirality. 1998; 10: 587-591https://doi.org/10.1002/(SICI)1520-636X(1998)10:7<587::AID-CHIR6>3.0.CO;2-#
        • Liu B.
        • Yao W.
        • Su Q.
        Racemization of S-(−)-nicotine during smoking and its relationship with pyrolysis process.
        J Anal Appl Pyrolysis. 2008; 81: 157-161https://doi.org/10.1016/j.jaap.2007.10.002
        • Liu S.-H.
        • Tang W.-T.
        • Yang Y.-H.
        Adsorption of nicotine in aqueous solution by a defective graphene oxide.
        Sci Total Environ. 2018; 643: 507-515https://doi.org/10.1016/j.scitotenv.2018.06.205
        • Rakić V.
        • Damjanović L.
        • Rac V.
        • Stosić D.
        • Dondur V.
        • Auroux A.
        The adsorption of nicotine from aqueous solutions on different zeolite structures.
        Water Res. 2010; 44: 2047-2057https://doi.org/10.1016/j.watres.2009.12.019
        • Bertholon J.F.
        • Becquemin M.H.
        • Annesi-Maesano I.
        • Dautzenberg B.
        Electronic cigarettes: a short review.
        Respir Int Rev Thorac Dis. 2013; 86: 433-438https://doi.org/10.1159/000353253
      2. Chatham-Stephens K, Law R, Taylor E, Kieszak S, Melstrom P, Bunnell R, et al. Exposure Calls to U. S. Poison Centers Involving Electronic Cigarettes and Conventional Cigarettes-September 2010-December 2014. J Med Toxicol 2016;12:350–7. 10.1007/s13181-016-0563-7.

        • Isa N.A.M.
        • Koh P.Y.
        • Doraj P.
        The tear function in electronic cigarette smokers.
        Optom Vis Sci. 2019; 96: 678-685https://doi.org/10.1097/OPX.0000000000001422
        • Tayyarah R.
        • Long G.A.
        Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air.
        Regul Toxicol Pharmacol. 2014; 70: 704-710https://doi.org/10.1016/j.yrtph.2014.10.010
        • Kosmider L.
        • Sobczak A.
        • Fik M.
        • Knysak J.
        • Zaciera M.
        • Kurek J.
        • et al.
        Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage.
        Nicotine Tob Res. 2014; 16: 1319-1326https://doi.org/10.1093/ntr/ntu078
        • Ward S.K.
        • Dogru M.
        • Wakamatsu T.
        • Ibrahim O.
        • Matsumoto Y.
        • Kojima T.
        • et al.
        Passive cigarette smoke exposure and soft contact lens wear.
        Optom Vis Sci. 2010; 87: 367-372https://doi.org/10.1097/OPX.0b013e3181d95188
        • Erginturk Acar D.
        • Acar U.
        • Ozen Tunay Z.
        • Ozdemir O.
        • Germen H.
        The effects of smoking on dry eye parameters in healthy women.
        Cutan Ocul Toxicol. 2017; 36: 1-4https://doi.org/10.3109/15569527.2015.1136828
        • Miglio F.
        • Naroo S.
        • Zeri F.
        • Tavazzi S.
        • Ponzini E.
        The effect of active smoking, passive smoking, and e-cigarettes on the tear film: an updated comprehensive review.
        Exp Eye Res. 2021; 210https://doi.org/10.1016/j.exer.2021.108691
        • Stapleton F.
        • Keay L.
        • Edwards K.
        • Naduvilath T.
        • Dart J.K.G.
        • Brian G.
        • et al.
        The incidence of contact lens-related microbial keratitis in Australia.
        Ophthalmology. 2008; 115: 1655-1662https://doi.org/10.1016/j.ophtha.2008.04.002
        • Szczotka-Flynn L.
        • Lass J.H.
        • Sethi A.
        • Debanne S.
        • Benetz B.A.
        • Albright M.
        • et al.
        Risk factors for corneal infiltrative events during continuous wear of silicone hydrogel contact lenses.
        Invest Ophthalmol Vis Sci. 2010; 51: 5421-5430https://doi.org/10.1167/iovs.10-5456
        • Cutter G.R.
        • Chalmers R.L.
        • Roseman M.
        The clinical presentation, prevalence, and risk factors of focal corneal infiltrates in soft contact lens wearers.
        Contact Lens Anterior Eye. 1996; 22: 30-37
      3. Musgrave CSA, Fang F. Contact Lens Materials: A Materials Science Perspective. Mater Basel 2019;12. 10.3390/ma12020261.

      4. Jones L, Brennan NA, González-Méijome J, Lally J, Maldonado-Codina C, Schmidt TA, et al. The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens materials, design, and care subcommittee. Invest Ophthalmol Vis Sci 2013;54:TFOS37-70. 10.1167/iovs.13-13215.

        • Nichols J.J.
        Deposition on silicone hydrogel lenses.
        Eye Contact Lens. 2013; 39: 20-23https://doi.org/10.1097/ICL.0b013e318275305b
      5. Health C for D and R. Class II Daily Wear Contact Lenses - Premarket Notification [510(k)] Guidance Document. FDA 2020.

        • Willcox M.
        • Keir N.
        • Maseedupally V.
        • Masoudi S.
        • McDermott A.
        • Mobeen R.
        • et al.
        CLEAR – Contact lens wettability, cleaning, disinfection and interactions with tears.
        Contact Lens Anterior Eye. 2021; 44: 157-191https://doi.org/10.1016/j.clae.2021.02.004
        • Green J.A.
        • Phillips K.S.
        • Hitchins V.M.
        • Lucas A.D.
        • Shoff M.E.
        • Hutter J.C.
        • et al.
        Material properties that predict preservative uptake for silicone hydrogel contact lenses.
        Eye Contact Lens. 2012; 38: 350-357https://doi.org/10.1097/ICL.0b013e318272c470
      6. Hutter JC. Editorial - FDA Group V: Is a Single Grouping Sufficient to Describe SiH Performance? 2007. http://www.siliconehydrogels.org/editorials/nov_07.asp.

        • Hutter J.C.
        • Green J.A.
        • Eydelman M.B.
        Proposed silicone hydrogel contact lens grouping system for lens care product compatibility testing.
        Eye Contact Lens. 2012; 38: 358-362https://doi.org/10.1097/ICL.0b013e318260c959
      7. Phillips A, Speedwell L. Contact Lenses - 6th Edition. Elsevier; 2018.

        • Svitova T.
        • Lin M.
        Wettability conundrum: discrepancies of soft contact lens performance in vitro and in vivo.
        Eur Phys J Spec Top. 2011; 197: 295-303https://doi.org/10.1140/epjst/e2011-01471-6
        • Cheng L.
        • Muller S.J.
        • Radke C.J.
        Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
        Curr Eye Res. 2004; 28: 93-108https://doi.org/10.1076/ceyr.28.2.93.26231
        • Tavazzi S.
        • Tonveronachi M.
        • Fagnola M.
        • Cozza F.
        • Ferraro L.
        • Borghesi A.
        • et al.
        Wear effects on microscopic morphology and hyaluronan uptake in siloxane-hydrogel contact lenses.
        J Biomed Mater Res B Appl Biomater. 2015; 103: 1092-1098https://doi.org/10.1002/jbm.b.33278
        • Bettuelli M.
        • Trabattoni S.
        • Fagnola M.
        • Tavazzi S.
        • Introzzi L.
        • Farris S.
        Surface properties and wear performances of siloxane-hydrogel contact lenses.
        J Biomed Mater Res B Appl Biomater. 2013; 101: 1585-1593https://doi.org/10.1002/jbm.b.32901
        • Panthi S.
        • Nichols J.J.
        An imaging-based analysis of lipid deposits on contact lens surfaces.
        Contact Lens Anterior Eye. 2018; 41: 342-350https://doi.org/10.1016/j.clae.2017.12.014
        • Rabiah N.I.
        • Scales C.W.
        • Fuller G.G.
        The influence of protein deposition on contact lens tear film stability.
        Colloids Surf B Biointerfaces. 2019; 180: 229-236https://doi.org/10.1016/j.colsurfb.2019.04.051
        • Broich J.R.
        • Weiss L.
        • Rapp J.
        Isolation and identification of biologically active contaminants from soft contact lenses. I. Nicotine deposits on worn lenses.
        Invest Ophthalmol Vis Sci. 1980; 19: 1328-1335
        • Clayton P.M.
        • Vas C.A.
        • Bui T.T.T.
        • Drake A.F.
        • McAdam K.
        Spectroscopic studies on nicotine and nornicotine in the UV region.
        Chirality. 2013; 25: 288-293https://doi.org/10.1002/chir.22141
      8. Stratton K, Shetty P, Wallace R, Bondurant S. Nicotine pharmacology. Clear. Smoke Assess. Sci. Base Tob. Harm Reduct., Washington, D.C.: National Academies Press (US); 2001, p. 243–82.

        • Ritger P.L.
        • Peppas N.A.
        A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs.
        J Controlled Release. 1987; 5: 23-36https://doi.org/10.1016/0168-3659(87)90034-4