Damage of the ocular surface from indoor suntanning—Insights from in vivo confocal microscopy

Published:April 08, 2021DOI:https://doi.org/10.1016/j.clae.2021.03.005

      Abstract

      Purpose

      To evaluate the ocular surface at the microstructural level of adults who habitually undertake indoor-suntanning utilising in vivo confocal microscopy.

      Methods

      Participants were prospectively recruited and enrolled into either а study group (n = 75) with a history UV indoor tanning, or a control group (n = 75) with no prior history of artificial tanning. The study group participated in voluntary tanning sessions performed with standard equipment and maintained their usual routine for eye protection. Slit lamp biomicroscopy and in vivo confocal microscopy were performed at baseline before undertaking a series of suntanning sessions (10 sessions of 10 min duration over a 15 day period), within three days after the last session, and four weeks after the last session. Control group participants were examined at baseline and 8 weeks later and did not participate in tanning sessions.

      Results

      All participants were female with a mean age of 25 ± 4 years and 24 ± 4 years in the study and control groups, respectively. No clinically significant changes were observed in either group over time using slit lamp biomicroscopy (all p ≥ 0.05), however, statistically significant differences were observed between the study and the control group for all corneal layers imaged using confocal microscopy (all p ≤ 0.03). Characteristic cystic conjunctival lesions with dark centres and bright borders were observed in 95% of the study group before and in 100% after the suntanning sessions.

      Conclusion

      Indoor suntanning resulted in statistically significant microstructural changes in the cornea and the bulbar conjunctiva that are undetectable with slit lamp biomicroscopy.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Say M.
        • Beauchet A.
        • Vouldoukis I.
        • Beauchet P.
        • Boudet M.
        • Tella E.
        • et al.
        Decrease in artificial tanning by French teenagers: 2011-2016.
        2018https://doi.org/10.1111/phpp.12380 (PubMed PMID: 29533482)
        • Tella E.
        • Beauchet A.
        • Vouldoukis I.
        • Sei J.F.
        • Beaulieu P.
        • Sigal M.L.
        • et al.
        French teenagers and artificial tanning.
        J Eur Acad Dermatol Venereol: JEADV. 2013; 27 (Epub 2012/10/20. PubMed PMID: 23078037): e428-32https://doi.org/10.1111/jdv.12015
        • Mawn V.B.
        • Fleischer Jr., A.B.
        A survey of attitudes, beliefs, and behavior regarding tanning bed use, sunbathing, and sunscreen use.
        J Am Acad Dermatol. 1993; 29 (Epub 1993/12/01. PubMed PMID: 8245261): 959-962
        • Gambichler T.
        • Sauermann K.
        • Altintas M.A.
        • Paech V.
        • Kreuter A.
        • Altmeyer P.
        • et al.
        Effects of repeated sunbed exposures on the human skin. In vivo measurements with confocal microscopy.
        Photodermatol Photoimmunol Photomed. 2004; 20 (Epub 2004/01/24. PubMed PMID: 14738530): 27-32
        • Shields C.L.
        • Kaliki S.
        • Arepalli S.
        • Atalay H.T.
        • Manjandavida F.P.
        • Pieretti G.
        • et al.
        Uveal melanoma in children and teenagers.
        Saudi J Ophthalmol. 2013; 27 (Epub 2013/11/15. PubMed PMID: 24227986; PubMed Central PMCID: PMCPmc3770213): 197-201https://doi.org/10.1016/j.sjopt.2013.06.013
        • Zuba E.B.
        • Francuzik W.
        • Malicki P.
        • Osmola-Mankowska A.
        • Jenerowicz D.
        Knowledge about ultraviolet radiation hazards and tanning behavior of cosmetology and medical students.
        Acta dermatovenerologica Croatica: ADC. 2016; 24 (Epub 2016/05/07. PubMed PMID: 27149135): 73-77
        • Reimann J.
        • McWhirter J.E.
        • Papadopoulos A.
        • Dewey C.
        A systematic review of compliance with indoor tanning legislation.
        BMC Public Health. 2018; 18 (Epub 2018/10/05. PubMed PMID: 30285702; PubMed Central PMCID: PMCPmc6171306.): 1096https://doi.org/10.1186/s12889-018-5994-4
        • Huang C.M.
        • Kirchhof M.G.
        A cross-sectional study of indoor tanning in fitness centres.
        J Cutan Med Surg. 2017; 21 (Epub 2017/04/19. PubMed PMID: 28418712): 401-407https://doi.org/10.1177/1203475417706059
        • Costagliola C.
        • Menzione M.
        • Chiosi F.
        • Romano M.R.
        • Della Corte M.
        • Rinaldi M.
        Retinal phototoxicity induced by hydrochlorothiazide after exposure to a UV tanning device.
        Photochem Photobiol. 2008; 84 (Epub 2008/08/05. PubMed PMID: 18673326): 1294-1297https://doi.org/10.1111/j.1751-1097.2008.00404.x
        • Brannon I.
        The truth about sun damage. Darling.
        (Epub)2020
        • McKnight C.M.
        • Sherwin J.C.
        • Yazar S.
        • Forward H.
        • Tan A.X.
        • Hewitt A.W.
        • et al.
        Pterygium and conjunctival ultraviolet autofluorescence in young Australian adults: the Raine study.
        Graefes Arch Clin Exp Ophthalmol. 2015; 43 (Epub 2014/10/14. PubMed PMID: 25307729): 300-307https://doi.org/10.1111/ceo.12455
        • Sun C.
        • Pezic A.
        • Mackey D.A.
        • Carlin J.B.
        • Kemp A.
        • Ellis J.A.
        • et al.
        Conjunctival ultraviolet autofluorescence as a measure of past sun exposure in children.
        Cancer Epidemiol Biomark Prev. 2017; 26 (Epub 2017/04/28. PubMed PMID: 28446546): 1146-1153https://doi.org/10.1158/1055-9965.epi-16-0846
        • Grupcheva C.N.
        • Grupchev D.I.
        • Radeva M.N.
        • Hristova E.G.
        UV damage of the anterior ocular surface - microstructural evidence by in vivo confocal microscopy.
        Cont Lens Anterior Eye. 2018; 41 (Epub 2018/11/22. PubMed PMID: 30458934): 482-488https://doi.org/10.1016/j.clae.2018.06.004
        • Efron N.
        Grading scales for contact lens complications.
        Ophthalmic Physiol Opt. 1998; 18 (Epub 1998/08/06. PubMed PMID: 9692040): 182-186https://doi.org/10.1016/s0275-5408(97)00066-5
        • Kearney S.
        • O’Donoghue L.
        • Pourshahidi L.K.
        • Richardson P.
        • Laird E.
        • Healy M.
        • et al.
        Conjunctival ultraviolet autofluorescence area, but not intensity, is associated with myopia.
        Clin Exp Optom. 2019; 102 (Epub 2018/08/17. PubMed PMID: 30114725): 43-50https://doi.org/10.1111/cxo.12825
        • Haworth K.M.
        • Chandler H.L.
        Seasonal effect on ocular sun exposure and conjunctival UV autofluorescence.
        Optom Vis Sci. 2017; 94 (Epub 2016/11/08. PubMed PMID: 27820717; PubMed Central PMCID: PMCPmc5266636): 219-228https://doi.org/10.1097/opx.0000000000001014
        • Kearney S.
        • O’Donoghue L.
        • Pourshahidi L.K.
        • Richardson P.M.
        • Saunders K.J.
        The use of conjunctival ultraviolet autofluorescence (CUVAF) as a biomarker of time spent outdoors.
        Ophthalmic Physiol Opt. 2016; 36 (Epub 2016/06/29. PubMed PMID: 27350182): 359-369https://doi.org/10.1111/opo.12309
        • Gajda M.
        • Kamińska-Winciorek G.
        • Wydmański J.
        • Tukiendorf A.
        • Kowalska M.
        Behaviors of active sunbeds users and their knowledge on the potential health risks; results of cross-sectional study in Poland.
        J Cosmet Dermatol. 2018; 17 (Epub 2018/04/07. PubMed PMID: 29624836): 538-544https://doi.org/10.1111/jocd.12548
        • Nadalin V.
        • Marrett L.
        • Atkinson J.
        • Tenkate T.
        • Rosen C.F.
        Tanning among Ontario adolescents pre-legislation: prevalence and beliefs.
        Prev Med. 2016; 91 (Epub 2016/09/01. PubMed PMID: 27576785): 244-249https://doi.org/10.1016/j.ypmed.2016.08.045
        • Gajda M.
        • Kaminska-Winciorek G.
        • Wydmanski J.
        • Tukiendorf A.
        • Kowalska M.
        Behaviors of active sunbeds users and their knowledge on the potential health risks; results of cross-sectional study in Poland.
        J Cosmet Dermatol. 2018; 17 (Epub 2018/04/07. PubMed PMID: 29624836): 538-544https://doi.org/10.1111/jocd.12548
        • Hay J.L.
        • Riley K.E.
        • Geller A.C.
        Tanning and Teens: is Indoor Exposure the Tip of the Iceberg? Cancer epidemiology, biomarkers & prevention : a publication of the American.
        Assoc Cancer Res. 2017; 26 (cosponsored by the American Society of Preventive Oncology. Epub 2017/08/03. PubMed PMID: 28765337; PubMed Central PMCID: PMCPmc5626009): 1170-1174https://doi.org/10.1158/1055-9965.epi-17-0095
        • Blashill A.J.
        • Pagoto S.
        Effect of legislation on indoor tanning prevalence in Alabama.
        Am J Public Health. 2017; 107 (Epub 2017/04/21. PubMed PMID: 28426299; PubMed Central PMCID: PMCPmc5425858): 966-968https://doi.org/10.2105/ajph.2017.303716
        • Daniel C.L.
        • Hay J.L.
        • Welles B.F.
        • Geller A.C.
        The urgent need to ban youth indoor tanning: evidence from college undergraduates.
        Transl Behav Med. 2017; 7 (Epub 2017/02/02. PubMed PMID: 28144835; PubMed Central PMCID: PMCPmc5684064): 645-647https://doi.org/10.1007/s13142-017-0469-1
        • Wurm E.M.
        • Longo C.
        • Curchin C.
        • Soyer H.P.
        • Prow T.W.
        • Pellacani G.
        In vivo assessment of chronological ageing and photoageing in forearm skin using reflectance confocal microscopy.
        Br J Dermatol. 2012; 167 (Epub 2012/03/21. PubMed PMID: 22428802): 270-279https://doi.org/10.1111/j.1365-2133.2012.10943.x
        • Dejonckheere G.
        • Suppa M.
        • Del Marmol V.
        • Meyer T.
        The actinic dysplasia syndrome - diagnostic approaches defining a new concept in field carcinogenesis with multiple cSCC.
        J Eur Acad Dermatol Venereol. 2019; 33 (PubMed PMID: 31833608): 16-20https://doi.org/10.1111/jdv.15949
        • Yazar S.
        • Cuellar-Partida G.
        • McKnight C.M.
        • Quach-Thanissorn P.
        • Mountain J.A.
        • Coroneo M.T.
        • et al.
        Genetic and environmental factors in conjunctival UV autofluorescence.
        JAMA Ophthalmol. 2015; 133 (Epub 2015/01/16. PubMed PMID: 25590795; PubMed Central PMCID: PMCPmc4840232.): 406-412https://doi.org/10.1001/jamaophthalmol.2014.5627
        • Ip M.H.
        • Chui J.J.
        • Tat L.
        • Coroneo M.T.
        Significance of fuchs flecks in patients with pterygium/pinguecula: earliest indicator of ultraviolet light damage.
        Cornea. 2015; 34 (Epub 2015/09/24. PubMed PMID: 26398157): 1560-1563https://doi.org/10.1097/ico.0000000000000621
        • Kwok L.S.
        • Daszynski D.C.
        • Kuznetsov V.A.
        • Pham T.
        • Ho A.
        • Coroneo M.T.
        Peripheral light focusing as a potential mechanism for phakic dysphotopsia and lens phototoxicity.
        Ophthalmic Physiol Opt. 2004; 24 (Epub 2004/03/10. PubMed PMID: 15005677): 119-129
        • Tenkate T.
        • Adam B.
        • Al-Rifai R.H.
        • Chou B.R.
        • Gobba F.
        • Ivanov I.D.
        • et al.
        WHO/ILO work-related burden of disease and injury: protocol for systematic reviews of occupational exposure to solar ultraviolet radiation and of the effect of occupational exposure to solar ultraviolet radiation on cataract.
        Environ Int. 2019; 125 (Epub 2019/02/10. PubMed PMID: 30737039): 542-553https://doi.org/10.1016/j.envint.2018.10.001
        • Chorley A.C.
        • Evans B.J.
        • Benwell M.J.
        Solar eye protection practices of civilian aircrew.
        Aerosp Med Hum Perform. 2015; 86 (Epub 2015/11/14. PubMed PMID: 26564760): 953-961https://doi.org/10.3357/amhp.4357.2015
        • Riley A.F.
        • Grupcheva C.N.
        • Malik T.Y.
        • Craig J.P.
        • McGhee C.N.
        The waiting game: natural history of a cataract waiting list in New Zealand.
        Clin Experiment Ophthalmol. 2001; 29 (Epub 2002/01/10. PubMed PMID: 11778807): 376-380
        • Notara M.
        • Behboudifard S.
        • Kluth M.A.
        • Masslo C.
        • Ganss C.
        • Frank M.H.
        UV light-blocking contact lenses protect against short-term UVB-induced limbal stem cell niche damage and inflammation.
        Sci Rep. 2018; 8 (PubMed PMID: 30135547): 12564https://doi.org/10.1038/s41598-018-30021-8
        • Colitz C.M.H.
        Ocular surface diseases in marine mammals.
        Vet Clin North Am Exot Anim Pract. 2019; 22 (Epub 2018/11/21. PubMed PMID: 30454761): 35-51https://doi.org/10.1016/j.cvex.2018.08.007
        • Kronschlager M.
        • Talebizadeh N.
        • Yu Z.
        • Meyer L.M.
        • Lofgren S.
        Apoptosis in rat cornea after in vivo exposure to ultraviolet radiation at 300 nm.
        Cornea. 2015; 34 (Epub 2015/06/16. PubMed PMID: 26075458): 945-949https://doi.org/10.1097/ico.0000000000000498
        • Talebizadeh N.
        • Yu Z.
        • Kronschlager M.
        • Soderberg P.
        Modelling the time evolution of active caspase-3 protein in the rat lens after in vivo exposure to ultraviolet radiation-B.
        PLoS One. 2014; 9 (Epub 2014/09/23. PubMed PMID: 25244366; PubMed Central PMCID: PMCPmc4171092): e106926https://doi.org/10.1371/journal.pone.0106926
        • Martinez-Levasseur L.M.
        • Furgal C.M.
        • Hammill M.O.
        • Burness G.
        Towards a better understanding of the effects of UV on Atlantic Walruses, Odobenus rosmarus rosmarus: a study combining histological data with local ecological knowledge.
        PLoS One. 2016; 11 (Epub 2016/04/07. PubMed PMID: 27049757; PubMed Central PMCID: PMCPmc4822789): e0152122https://doi.org/10.1371/journal.pone.0152122
        • Gambichler T.
        • Huyn J.
        • Tomi N.S.
        • Moussa G.
        • Moll C.
        • Sommer A.
        • et al.
        A sscomparative pilot study on ultraviolet-induced skin changes assessed by noninvasive imaging techniques in vivo.
        Photochem Photobiol. 2006; 82 (Epub 2006/03/25. PubMed PMID: 16555922): 1103-1107https://doi.org/10.1562/2005-12-21-ra-757
      1. Limbal stem cell transplantation: an evidence-based analysis.
        Ont Health Technol Assess Ser. 2008; 8 (Epub 2008/01/01. PubMed PMID: 23074512; PubMed Central PMCID: PMCPmc3377549): 1-58
        • Mazzotta C.
        • Traversi C.
        • Paradiso A.L.
        • Latronico M.E.
        • Rechichi M.
        Pulsed light accelerated crosslinking versus continuous light accelerated crosslinking: one-year results.
        J Ophthalmol. 2014; 2014 (PubMed PMID: 25165576): 604731https://doi.org/10.1155/2014/604731
        • Mazzotta C.
        • Traversi C.
        • Baiocchi S.
        • Caporossi O.
        • Bovone C.
        • Sparano M.C.
        • et al.
        Corneal healing after riboflavin ultraviolet-a collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications.
        Am J Ophthalmol. 2008; 146 (Epub 2008/08/02. PubMed PMID: 18672225): 527-533https://doi.org/10.1016/j.ajo.2008.05.042
        • Coroneo M.T.
        • Tat L.
        • Chen H.
        • Grupchev D.I.
        • Grupcheva C.N.
        • Ip M.H.
        Handing it to pterygium: explaining pterygium laterality. The ocular surface.
        2020