In vitro analysis of the interaction of tear film inflammatory markers with contemporary contact lens materials

  • Parisa Mirzapour
    Corresponding author at: Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
    Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
    Search for articles by this author
  • David J. McCanna
    Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
    Search for articles by this author
  • Lyndon Jones
    Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

    Centre for Eye & Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
    Search for articles by this author
Published:March 23, 2021DOI:


      • Contemporary contact lenses were soaked in solutions containing IL-1β, IL-6, IL-8 and TNF-α.
      • Samples of the soaking solutions were analyzed using the Meso Scale Discovery system.
      • The contact lens materials tested did not exhibit uptake of IL-6.
      • The contact lens materials tested did not exhibit more than 10 ± 3 % to 25 ± 12 % uptake of IL-1β, IL-8 or TNF-α.
      • Increases in corneal infiltrative events associated with reusable SiHy use are likely not due to uptake of these cytokines.



      Several clinical studies have suggested that reusable silicone hydrogel contact lens materials exhibit a two-times increased rate of corneal infiltrative events compared to reusable hydrogels. One potential factor contributing to this complication relates to the differential uptake of tear film-based pro-inflammatory cytokines. The purpose of this study was to use an in vitro assay to investigate whether four pro-inflammatory cytokines differed in their uptake onto six contemporary contact lens materials.


      Conventional hydrogel (etafilcon A, omafilcon A) and silicone hydrogel (balafilcon A, comfilcon A, senofilcon A, somofilcon A) contact lens materials were soaked in solutions containing pro-inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α. Samples of the soaking solutions were collected over various time points and analyzed using the Meso Scale Discovery system, which served as a measurement of cytokine uptake onto the contact lens materials.


      Both conventional hydrogels (etafilcon A, omafilcon A) and two of the four silicone hydrogels tested (balafilcon A, comfilcon A), exhibited some uptake of IL-1β, IL-8 or TNF-α (p < 0.05). Senofilcon A and somofilcon A did not exhibit uptake of any of these cytokines (p > 0.05). There was no uptake of IL-6 onto any of the contact lens materials investigated (p > 0.05).


      The contact lens materials tested did not exhibit any uptake of IL-6 and furthermore, did not exhibit more than 10 ± 3 % to 25 ± 12 % uptake of IL-1β, IL-8 or TNF-α. Numerous factors could contribute to the reported increase in corneal infiltrative events with reusable silicone hydrogel materials, however, based on these results, it appears that uptake of these four cytokines are unlikely to contribute to this finding.


      To read this article in full you will need to make a payment


        • Knop E.
        • Knop N.
        The role of eye-associated lymphoid tissue in corneal immune protection.
        J Anat. 2005; 206: 271-285
        • Johnson A.
        • Pearlman E.
        Toll-like receptors in the cornea.
        Ocul Surf. 2005; 3: S187-S189
        • Foulsham W.
        • Coco G.
        • Amouzegar A.
        • Chauhan S.K.
        • Dana R.
        When clarity Is crucial: regulating ocular surface immunity.
        Trends Immunol. 2018; 39: 288-301
        • Forrester J.V.
        • Xu H.
        Good news-bad news: the yin and yang of immune privilege in the eye.
        Front Immunol. 2012; 3: 338
        • Nakamura Y.
        • Sotozono C.
        • Kinoshita S.
        Inflammatory cytokines in normal human tears.
        Curr Eye Res. 1998; 17: 673-676
        • Wei Y.
        • Gadaria-Rathod N.
        • Epstein S.
        • Asbell P.
        Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures.
        Invest Ophthalmol Vis Sci. 2013; 54: 8327-8336
        • Massingale M.L.
        • Li X.
        • Vallabhajosyula M.
        • Chen D.
        • Wei Y.
        • Asbell P.A.
        Analysis of inflammatory cytokines in the tears of dry eye patients.
        Cornea. 2009; 28: 1023-1027
        • Yamaguchi T.
        • Calvacanti B.M.
        • Cruzat A.
        • Qazi Y.
        • Ishikawa S.
        • Osuka A.
        • et al.
        Correlation between human tear cytokine levels and cellular corneal changes in patients with bacterial keratitis by in vivo confocal microscopy.
        Invest Ophthalmol Vis Sci. 2014; 55: 7457-7466
        • Santacruz C.
        • Linares M.
        • Garfias Y.
        • Loustaunau L.M.
        • Pavon L.
        • Perez-Tapia S.M.
        • et al.
        Expression of IL-8, IL-6 and IL-1β in tears as a main characteristic of the immune response in human microbial keratitis.
        Int J Mol Sci. 2015; 16: 4850-4864
        • Sakimoto T.
        • Ohnishi T.
        • Ishimori A.
        Simultaneous study of matrix metalloproteinases, proinflammatory cytokines, and soluble cytokine receptors in the tears of noninfectious corneal ulcer patients.
        Graefes Arch Clin Exp Ophthalmol. 2014; 252: 1451-1456
        • Gonzalez-Perez J.
        • Villa-Collar C.
        • Sobrino Moreiras T.
        • Lema Gesto I.
        • Gonzalez-Meijome J.M.
        • Rodriguez-Ares M.T.
        • et al.
        Tear film inflammatory mediators during continuous wear of contact lenses and corneal refractive therapy.
        Br J Ophthalmol. 2012; 96: 1092-1098
        • Lam H.
        • Bleiden L.
        • de Paiva C.S.
        • Farley W.
        • Stern M.E.
        • Pflugfelder S.C.
        Tear cytokine profiles in dysfunctional tear syndrome.
        Am J Ophthalmol. 2009; 147 (e1): 198-205
        • Landsend E.C.S.
        • Utheim Ø.
        • Pedersen H.R.
        • Aass H.C.D.
        • Lagali N.
        • Dartt D.A.
        • et al.
        The level of inflammatory tear cytokines is elevated in congenital aniridia and associated with meibomian gland dysfunction.
        Invest Ophthalmol Vis Sci. 2018; 59: 2197-2204
        • Balasubramanian S.A.
        • Pye D.C.
        • Willcox M.D.
        Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus.
        Clin Exp Optom. 2013; 96: 214-218
        • Tortora G.J.
        • Derrickson B.
        Principles of anatomy & physiology.
        14th ed. Wiley, Hoboken, NJ2014
        • Nussenblatt R.B.
        • Whitcup S.M.
        Uveitis: fundamentals and clinical practice.
        4th ed. Mosby, Philadelphia, Pa2010
        • Zahir-Jouzdani F.
        • Atyabi F.
        • Mojtabavi N.
        Interleukin-6 participation in pathology of ocular diseases.
        Pathophysiology. 2017; 24: 123-131
        • D’Elia R.V.
        • Harrison K.
        • Oyston P.C.
        • Lukaszewski R.A.
        • Clark G.C.
        Targeting the "cytokine storm" for therapeutic benefit.
        Clin Vaccine Immunol. 2013; 20: 319-327
        • Murphy K.
        • Weaver C.
        Janeway’s immunobiology.
        9th edition. Garland Science/Taylor & Francis Group, LLC, New York, NY2017 (ed.)
        • Akpek E.K.
        • Gottsch J.D.
        Immune defense at the ocular surface.
        Eye (Lond). 2003; 17: 949-956
        • Galletti J.G.
        • Guzman M.
        • Giordano M.N.
        Mucosal immune tolerance at the ocular surface in health and disease.
        Immunology. 2017; 150: 397-407
        • Hazlett L.D.
        Corneal response to pseudomonas aeruginosa infection.
        Prog Retin Eye Res. 2004; 23: 1-30
        • Tisoncik J.R.
        • Korth M.J.
        • Simmons C.P.
        • Farrar J.
        • Martin T.R.
        • Katze M.G.
        Into the eye of the cytokine storm.
        Microbiol Mol Biol Rev. 2012; 76: 16-32
        • Lopez-Castejon G.
        • Brough D.
        Understanding the mechanism of IL-1β secretion.
        Cytokine Growth Factor Rev. 2011; 22: 189-195
        • Da Cunha A.P.
        • Zhang Q.
        • Prentiss M.
        • Wu X.Q.
        • Kainz V.
        • Xu Y.Y.
        • et al.
        The hierarchy of proinflammatory cytokines in ocular inflammation.
        Curr Eye Res. 2018; 43: 553-565
        • Turner M.D.
        • Nedjai B.
        • Hurst T.
        • Pennington D.J.
        Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease.
        Biochim Biophys Acta. 2014; 1843: 2563-2582
        • Parameswaran N.
        • Patial S.
        Tumor necrosis factor-α signaling in macrophages.
        Crit Rev Eukaryot Gene Expr. 2010; 20: 87-103
        • Nichols J.J.
        Deposition on silicone hydrogel lenses.
        Eye Contact Lens. 2013; 39: 20-23
        • Subbaraman L.N.
        • Glasier M.A.
        • Senchyna M.
        • Sheardown H.
        • Jones L.
        Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials.
        Curr Eye Res. 2006; 31: 787-796
        • Mochizuki H.
        • Yamada M.
        • Hatou S.
        • Kawashima M.
        • Hata S.
        Deposition of lipid, protein, and secretory phospholipase A2 on hydrophilic contact lenses.
        Eye Contact Lens. 2008; 34: 46-49
        • Young G.
        • Bowers R.
        • Hall B.
        • Port M.
        Clinical comparison of omafilcon a with four control materials.
        CLAO J. 1997; 23: 249-258
        • Lorentz H.
        • Heynen M.
        • Kay L.M.
        • Dominici C.Y.
        • Khan W.
        • Ng W.W.
        • et al.
        Contact lens physical properties and lipid deposition in a novel characterized artificial tear solution.
        Mol Vis. 2011; 17: 3392-3405
        • Szczotka-Flynn L.
        • Diaz M.
        Risk of corneal inflammatory events with silicone hydrogel and low dk hydrogel extended contact lens wear: a meta-analysis.
        Optom Vision Sci. 2007; 84: 247-256
        • Radford C.F.
        • Minassian D.
        • Dart J.K.
        • Stapleton F.
        • Verma S.
        Risk factors for nonulcerative contact lens complications in an ophthalmic accident and emergency department: a case-control study.
        Ophthalmology. 2009; 116: 385-392
        • Chalmers R.L.
        • Wagner H.
        • Mitchell G.L.
        • Lam D.Y.
        • Kinoshita B.T.
        • Jansen M.E.
        • et al.
        Age and other risk factors for corneal infiltrative and inflammatory events in young soft contact lens wearers from the contact Lens assessment in youth (CLAY) study.
        Investigat Ophthalmol Visual Sci. 2011; 52: 6690-6696
        • Chalmers R.L.
        • Keay L.
        • McNally J.
        • Kern J.
        Multicenter case-control study of the role of lens materials and care products on the development of corneal infiltrates.
        Optom Vision Sci. 2012; 89: 316-325
        • Hutter J.C.
        • Green J.A.
        • Eydelman M.B.
        Proposed silicone hydrogel contact Lens grouping system for Lens care product compatibility testing.
        Eye Contact Lens. 2012; 38: 358-362
        • Dixon P.
        • Chauhan A.
        Effect of the surface layer on drug release from delefilcon-a (Dailies Total1®) contact lenses.
        Int J Pharm. 2017; 529: 89-101
        • Schafer J.
        • Steffen R.
        • Reindel W.
        • Chinn J.
        Evaluation of surface water characteristics of novel daily disposable contact lens materials, using refractive index shifts after wear.
        Clin Ophthalmol (Auckland, N.Z.). 2015; 9: 1973-1979
        • Maldonado-Codina C.
        4 - soft Lens materials.
        in: Efron N. Contact Lens practice. third edition). Elsevier, 2018: 45-60 (e1)
        • Reis M.I.
        • do Vale A.
        • Pereira P.J.
        • Azevedo J.E.
        • Dos Santos N.M.
        Caspase-1 and IL-1β processing in a teleost fish.
        PLoS One. 2012; 7e50450
        • Meyers C.A.
        • Johanson K.O.
        • Miles L.M.
        • McDevitt P.J.
        • Simon P.L.
        • Webb R.L.
        • et al.
        Purification and characterization of human recombinant interleukin-1 beta.
        J Biol Chem. 1987; 262: 11176-11181
        • Bazin R.
        • Lemieux R.
        Role of the macrophage-derived hybridoma growth factor in the in vitro and in vivo proliferation of newly formed B cell hybridomas.
        J Immunol. 1987; 139: 780-787
        • Hirano T.
        Interleukin 6 and its receptor: ten years later.
        Int Rev Immunol. 1998; 16: 249-284
        • Clark-Lewis I.
        • Moser B.
        • Walz A.
        • Baggiolini M.
        • Scott G.J.
        • Aebersold R.
        Chemical synthesis, purification, and characterization of two inflammatory proteins, neutrophil activating peptide 1 (interleukin-8) and neutrophil activating peptide.
        Biochemistry. 1991; 30: 3128-3135
        • Song M.Y.
        • Park S.K.
        • Kim C.S.
        • Yoo T.H.
        • Kim B.
        • Kim M.S.
        • et al.
        Characterization of a novel anti-human TNF-α murine monoclonal antibody with high binding affinity and neutralizing activity.
        Exp Mol Med. 2008; 40: 35-42
        • Sreekrishna K.
        • Nelles L.
        • Potenz R.
        • Cruze J.
        • Mazzaferro P.
        • Fish W.
        • et al.
        High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast pichia pastoris.
        Biochemistry. 1989; 28: 4117-4125
        • Aggarwal B.B.
        • Kohr W.J.
        • Hass P.E.
        • Moffat B.
        • Spencer S.A.
        • Henzel W.J.
        • et al.
        Human tumor necrosis factor. Production, purification, and characterization.
        J Biol Chem. 1985; 260: 2345-2354
        • Novák P.
        • Havlíček V.
        4 - protein extraction and precipitation.
        in: Ciborowski P. Silberring J. Proteomic profiling and analytical chemistry. second edition. Elsevier, Boston2016: 51-62
        • Refojo M.F.
        • Leong F.-L.
        Microscopic determination of the penetration of proteins and polysaccharides into poly(hydroxyethyl methacrylate) and similar hydrogels.
        J Polym Sci. 1979; 66: 227-237
        • Garrett Q.
        • Laycock B.
        • Garrett R.W.
        Hydrogel lens monomer constituents modulate protein sorption.
        Investigat Ophthalmol Visual Sci. 2000; 41: 1687-1695
        • Heynen M.
        • Babaei Omali N.
        • Fadli Z.
        • Coles-Brennan C.
        • Subbaraman L.N.
        • Jones L.
        Selectivity and localization of lysozyme uptake in contemporary hydrogel contact lens materials, journal of biomaterials science.
        Polymer edition. 2017; 28: 1351-1364
        • Jadi S.
        • Heynen M.
        • Luensmann D.
        • Jones L.
        Composition of incubation solution impacts in vitro protein uptake to silicone hydrogel contact lenses.
        Mol Vis. 2012; 18: 337-347
        • Ng A.
        • Heynen M.
        • Luensmann D.
        • Jones L.
        Impact of tear film components on lysozyme deposition to contact lenses.
        Optom Vis Sci. 2012; 89: 392-400
        • Hall B.
        • Jones L.W.
        • Forrest J.A.
        Competitive effects from an artificial tear solution to protein adsorption.
        Optom Vis Sci. 2015; 92: 781-789
        • Meso Scale Discovery
        MSD multi-spot® assay system: proinflammatory panel 1 (human) kits meso scale diagnostics.
        LLC, Rockville, MD2018
        • Meso Scale Discovery
        MSD sectorTM and QuickPlex® plates: standard and High bind plates meso scale diagnostics.
        LLC., Rockville, MD2014
        • Luensmann D.
        • Jones L.
        Protein deposition on contact lenses: the past, the present, and the future.
        Contact lens Anterior Eye. 2012; 35: 53-64
        • Hall B.
        • Jones L.
        • Forrest J.A.
        Measuring the kinetics and activity of adsorbed proteins: in vitro lysozyme deposited onto hydrogel contact lenses over short time periods.
        J Biomed Mater Res A. 2013; 101: 755-764
        • Chao C.
        • Golebiowski B.
        • Stapleton F.
        • Richdale K.
        Changes in tear cytokine concentrations following discontinuation of soft contact lenses-a pilot study.
        Eye Contact Lens. 2016; 42: 237-243
        • Dionne K.
        • Redfern R.L.
        • Nichols J.J.
        • Nichols K.K.
        Analysis of tear inflammatory mediators: a comparison between the microarray and luminex methods.
        Mol Vis. 2016; 22: 177-188
        • Fu R.
        • Klinngam W.
        • Heur M.
        • Edman M.C.
        • Hamm-Alvarez S.F.
        Tear proteases and protease inhibitors: potential biomarkers and disease drivers in ocular surface disease.
        Eye Contact Lens. 2020; 46: S70-S83
        • de Souza G.A.
        • Godoy L.M.
        • Mann M.
        Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors.
        Genome Biol. 2006; 7: R72
        • Remington L.A.
        Clinical anatomy and physiology of the visual system.
        3rd ed. Elsevier/Butterworth Heinemann, St. Louis, Mo2012
        • Nausch H.
        • Huckauf J.
        • Koslowski R.
        • Meyer U.
        • Broer I.
        • Mikschofsky H.
        Recombinant production of human interleukin 6 in Escherichia coli.
        PLoS One. 2013; 8e54933