Advertisement
Research Article| Volume 44, ISSUE 2, P132-156, April 2021

Download started.

Ok

BCLA CLEAR - Anatomy and physiology of the anterior eye

      Abstract

      A key element of contact lens practice involves clinical evaluation of anterior eye health, including the cornea and limbus, conjunctiva and sclera, eyelids and eyelashes, lacrimal system and tear film. This report reviews the fundamental anatomy and physiology of these structures, including the vascular supply, venous drainage, lymphatic drainage, sensory innervation, physiology and function. This is the foundation for considering the potential interactions with, and effects of, contact lens wear on the anterior eye. This information is not consistently published as academic research and this report provides a synthesis from all available sources. With respect to terminology, the report aims to promote the consistent use of nomenclature in the field, and generally adopts anatomical terms recommended by the Federative Committee for Anatomical Terminology. Techniques for the examination of the ocular surface are also discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Federative International Committee on Anatomical Terminology
        Terminologia Histologica: International Terms for Human Cytology and Histology.
        Lippincott Williams & Wilkins, 2008
        • Bergmanson J.P.G.
        Clinical Ocular Anatomy and Physiology.
        Texas Eye Research and Technology Center, 2020
        • Brautaset R.L.
        • Nilsson M.
        • Miller W.L.
        • Leach N.E.
        • Tukler J.H.
        • Bergmanson J.P.G.
        Central and peripheral corneal thinning in keratoconus.
        Cornea. 2013; 32: 257-261
        • Duke-Elder S.
        • Wybar K.C.
        The anatomy of the visual system. 2. The C V Mosby Company, St. Louis1961: 372-375
        • Bergmanson J.P.G.
        • Martinez J.G.
        Size does matter: what is the corneo-limbal diameter?.
        Clin Exp Optom. 2017; 100: 522-528
        • Martin D.K.
        • Holden B.A.
        A new method for measuring the diameter of the in vivo human cornea.
        Am J Optom Physiol Opt. 1982; 59: 436-441
        • Wolffsohn J.S.
        • Dumbleton K.
        • Huntjens B.
        • Kandel H.
        • Koh S.
        • Kunnen C.M.E.
        • et al.
        CLEAR - evidence based contact lens practice.
        Cont Lens Anterior Eye. 2021; 44 (In press)
        • McKee H.D.
        • Irion L.C.D.
        • Carley F.M.
        • Brahma A.K.
        • Jafarinasab M.R.
        • Rahmati-Kamel M.
        • et al.
        Human corneal anatomy redefined: a novel pre-Descemet layer (Dua’s layer) (Ophthalmology 2013;120:1778–85).
        Ophthalmology. 2014; 121: e24-e25https://doi.org/10.1016/j.ophtha.2013.12.021
        • Jester J.V.
        • Murphy C.J.
        • Winkler M.
        • Bergmanson J.P.G.
        • Brown D.
        • Steinert R.F.
        • et al.
        Lessons in corneal structure and mechanics to guide the corneal surgeon.
        Ophthalmology. 2013; 120: 1715-1717
        • Dua H.S.
        • Faraj L.A.
        • Said D.G.
        • Gray T.
        • Lowe J.
        Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer).
        Ophthalmology. 2013; 120: 1778-1785
        • Van Buskirk E.M.
        The anatomy of the limbus.
        Eye. 1989; 3: 101-108
        • Goldberg M.F.
        • Bron A.J.
        Limbal palisades of vogt.
        Trans Am Ophthalmol Soc. 1982; 80: 155-171
        • Dua H.S.
        • Azuara-Blanco A.
        Limbal stem cells of the corneal epithelium.
        Surv Ophthalmol. 2000; 44: 415-425
        • Dua H.S.
        • Shanmuganathan V.A.
        • Powell-Richards A.O.
        • Tighe P.J.
        • Joseph A.
        Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche.
        Br J Ophthalmol. 2005; 89: 529-532
        • Thoft R.A.
        • Friend J.
        The X, Y, Z hypothesis of corneal epithelial maintenance.
        Invest Ophthalmol Vis Sci. 1983; 24: 1442-1443
        • Zieske J.D.
        Perpetuation of stem cells in the eye.
        Eye. 1994; 8: 163-169
        • Ashby B.D.
        • Garrett Q.
        • Willcox M.D.P.
        Corneal injuries and wound healing--review of processes and therapies.
        Austin J Clin Ophthalmol. 2014; 1: 1017
        • Szerenyi K.
        • Wang X.
        • Gabrielian K.
        • LaBree L.
        • McDonnell P.J.
        Immunochemistry with 5-bromo-2-deoxyuridine for visualization of mitotic cells in the corneal epithelium.
        Cornea. 1994; 13: 487-492
        • Ren H.
        • Wilson G.
        Apoptosis in the corneal epithelium.
        Invest Ophthalmol Vis Sci. 1996; 37: 1017-1025
        • Ladage P.M.
        • Yamamoto K.
        • Li L.
        • Ren D.H.
        • Petroll W.M.
        • Jester J.V.
        • et al.
        Corneal epithelial homeostasis following daily and overnight contact lens wear.
        Cont Lens Anterior Eye. 2002; 25: 11-21
        • Ladage P.M.
        • Jester J.V.
        • Petroll W.M.
        • Bergmanson J.P.G.
        • Cavanagh H.D.
        Vertical movement of epithelial basal cells toward the corneal surface during use of extended-wear contact lenses.
        Invest Ophthalmol Vis Sci. 2003; 44: 1056-1063
        • Morgan P.
        • Murphy P.J.
        • Gifford K.
        • Gifford P.
        • Golebiowski B.
        • Johnson L.
        • et al.
        CLEAR - Effect of contact lens materials and designs on the anatomy and physiology of the eye.
        Cont Lens Anterior Eye. 2021; 44 (In press)
        • Robertson D.M.
        • Cavanagh H.D.
        The clinical and cellular basis of contact lens-related corneal infections: a review.
        Clin Ophthalmol. 2008; 2: 907-917
        • Gillette T.E.
        • Chandler J.W.
        • Greiner J.V.
        Langerhans cells of the ocular surface.
        Ophthalmology. 1982; 89: 700-711
        • Klareskog L.
        • Forsum U.
        • Tjernlund U.M.
        • Rask L.
        • Peterson P.A.
        Expression of Ia antigen-like molecules on cells in the corneal epithelium.
        Invest Ophthalmol Vis Sci. 1979; 18: 310-313
        • Hamrah P.
        • Zhang Q.
        • Liu Y.
        • Reza Dana M.
        Novel characterization of MHC class II–Negative population of resident corneal langerhans cell–Type dendritic cells.
        Invest Ophthalmol Vis Sci. 2002; 43: 639-646
        • Aggarwal S.
        • Kheirkhah A.
        • Cavalcanti B.M.
        • Cruzat A.
        • Jamali A.
        • Hamrah P.
        Correlation of corneal immune cell changes with clinical severity in dry eye disease: an in vivo confocal microscopy study.
        Ocul Surf. 2020; https://doi.org/10.1016/j.jtos.2020.05.012
        • Kamel J.T.
        • Zhang A.C.
        • Downie L.E.
        Corneal epithelial dendritic cell response as a putative marker of neuro-inflammation in small Fiber neuropathy.
        Ocul Immunol Inflamm. 2019; : 1-4
        • Kwon M.S.
        • Carnt N.A.
        • Truong N.R.
        • Pattamatta U.
        • White A.J.
        • Samarawickrama C.
        • et al.
        Dendritic cells in the cornea during Herpes simplex viral infection and inflammation.
        Surv Ophthalmol. 2018; 63: 565-578
        • Müller L.J.
        • Pels L.
        • Vrensen G.F.
        Ultrastructural organization of human corneal nerves.
        Invest Ophthalmol Vis Sci. 1996; 37: 476-488
        • Lunstrum G.P.
        • Sakai L.Y.
        • Keene D.R.
        • Morris N.P.
        • Burgeson R.E.
        Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils.
        J Biol Chem. 1986; 261: 9042-9048
        • Gipson I.K.
        The Anatomy and Cell Biology of the Human Cornea, Limbus, Counjunctiva, and Adnexa.
        Smolin and Thoft’s the Cornea Scientific Foundation and Clinical Practice, 2005: 1-35
        • Mathew J.H.
        • Bergmanson J.P.G.
        • Doughty M.J.
        Fine structure of the interface between the anterior limiting lamina and the anterior stromal fibrils of the human cornea.
        Invest Ophthalmol Vis Sci. 2008; 49: 3914-3918
        • Germundsson J.
        • Karanis G.
        • Fagerholm P.
        • Lagali N.
        Age-related thinning of Bowman’s layer in the human cornea in vivo.
        Invest Ophthalmol Vis Sci. 2013; 54: 6143-6149
        • Bergmanson J.
        • Farmer E.
        • Goosey J.
        Epithelial plugs in radial keratotomy: the origin of incisional keratitis?.
        Cornea. 2001; 20: 866-872
        • Meek K.M.
        • Knupp C.
        Corneal structure and transparency.
        Prog Retin Eye Res. 2015; 49: 1-16
        • Meek K.M.
        • Boote C.
        The organization of collagen in the corneal stroma.
        Exp Eye Res. 2004; 78: 503-512
        • Bergmanson J.P.G.
        • Mosqueda C.L.
        • Burns A.R.
        Human stromal lamellar morphology and its relationship to central to peripheral thickness change.
        Invest Ophthalmol Vis Sci. 2016; 57: 2366
        • Bron A.
        • Tripathi R.
        • Tripathi B.
        Wolff’s Anatomy of the Eye and Orbit, 8Ed.
        8 edition. CRC Press, 1998
        • Bergmanson J.P.G.
        • Horne J.
        • Doughty M.J.
        • Garcia M.
        • Gondo M.
        Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission Electron microscope.
        Eye Contact Lens Sci Clin Pract. 2005; 31: 281-287https://doi.org/10.1097/01.icl.0000165280.94927.0d
        • Møller-Pedersen T.
        • Ledet T.
        • Ehlers N.
        The keratocyte density of human donor corneas.
        Curr Eye Res. 1994; 13: 163-169https://doi.org/10.3109/02713689409042412
        • Møller-Pedersen T.
        • Ehlers N.
        A three-dimensional study of the human corneal keratocyte density.
        Curr Eye Res. 1995; 14: 459-464
        • Petroll W.M.
        • Boettcher K.
        • Barry P.
        • Cavanagh H.D.
        • Jester J.V.
        Quantitative assessment of anteroposterior keratocyte density in the normal rabbit cornea.
        Cornea. 1995; 14: 3-9
        • Clarèus F.
        Hornhinnans Histologi.
        (Stockholm)1857
        • Müller L.J.
        • Pels L.
        • Vrensen G.F.
        Novel aspects of the ultrastructural organization of human corneal keratocytes.
        Invest Ophthalmol Vis Sci. 1995; 36: 2557-2567
        • Watsky M.A.
        Keratocyte gap junctional communication in normal and wounded rabbit corneas and human corneas.
        Invest Ophthalmol Vis Sci. 1995; 36: 2568-2576
        • Snyder M.C.
        • Bergmanson J.P.
        • Doughty M.J.
        Keratocytes: no more the quiet cells.
        J Am Optom Assoc. 1998; 69: 180-187
        • Kuwabara T.
        Current concepts in anatomy and histology of the cornea.
        Contact Intraocul Lens Med J. 1978; 4: 101
        • Murphy C.
        • Alvarado J.
        • Juster R.
        • Maglio M.
        Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study.
        Invest Ophthalmol Vis Sci. 1984; 25: 312-322
        • Brooks A.M.
        • Grant G.B.
        • Gillies W.E.
        The identification of corneal guttae.
        Cornea. 1991; 10: 249-260
        • Fuchs E.
        Dystrophia epithelialis corneae.
        Albrecht von Graefes Archiv Für Ophthalmologie. 1910; 76: 478-508
        • Bergmanson J.P.
        • Sheldon T.M.
        • Goosey J.D.
        Fuchs’ endothelial dystrophy: a fresh look at an aging disease.
        Ophthalmic Physiol Opt. 1999; 19: 210-222
        • Bergmanson J.P.
        Histopathological analysis of corneal endothelial polymegethism.
        Cornea. 1992; 11: 133-142
        • Hirsch M.
        • Renard G.
        • Faure J.P.
        • Pouliquen Y.
        Study of the ultrastructure of the rabbit corneal endothelium by the freeze-fracture technique: apical and lateral junctions.
        Exp Eye Res. 1977; 25: 277-288
        • Bourne W.M.
        Cellular changes in transplanted human corneas.
        Cornea. 2001; 20: 560-569
      1. Colby K. Dana R. Foundations of Corneal Disease: Past, Present and Future. Springer, Cham, 2020
        • Müller L.J.
        • Marfurt C.F.
        • Kruse F.
        • Tervo T.M.T.
        Corneal nerves: structure, contents and function.
        Exp Eye Res. 2003; 76: 521-542
        • Marfurt C.F.
        • Ellis L.C.
        Immunohistochemical localization of tyrosine hydroxylase in corneal nerves.
        J Comp Neurol. 1993; 336: 517-531
        • Marfurt C.F.
        • Cox J.
        • Deek S.
        • Dvorscak L.
        Anatomy of the human corneal innervation.
        Exp Eye Res. 2010; 90: 478-492
        • Zander E.
        • Weddell G.
        Observations on the innervation of the cornea.
        J Anat. 1951; 85: 68-99
        • Stepp M.A.
        • Pal-Ghosh S.
        • Downie L.E.
        • Zhang A.C.
        • Chinnery H.R.
        • Machet J.
        • et al.
        Corneal epithelial “Neuromas”: a case of mistaken identity?.
        Cornea. 2020; 39: 930-934
        • Al-Aqaba M.A.
        • Fares U.
        • Suleman H.
        • Lowe J.
        • Dua H.S.
        Architecture and distribution of human corneal nerves.
        Br J Ophthalmol. 2010; 94: 784-789
        • Al-Aqaba M.A.
        • Dhillon V.K.
        • Mohammed I.
        • Said D.G.
        • Dua H.S.
        Corneal nerves in health and disease.
        Prog Retin Eye Res. 2019; 73100762
        • Millodot M.
        • O’Leary D.J.
        Effect of oxygen deprivation on corneal sensitivity.
        Acta Ophthalmol. 1980; 58: 434-439
        • Courson J.A.
        • Smith I.
        • Do T.
        • Landry P.T.
        • Hargrave A.
        • Behzad A.R.
        • et al.
        Serial block-face scanning electron microscopy reveals neuronal-epithelial cell fusion in the mouse cornea.
        PLoS One. 2019; 14e0224434
        • Rózsa A.J.
        • Beuerman R.W.
        Density and organization of free nerve endings in the corneal epithelium of the rabbit.
        Pain. 1982; 14: 105-120
        • Harris L.W.
        • Purves D.
        Rapid remodeling of sensory endings in the corneas of living mice.
        J Neurosci. 1989; 9: 2210-2214
        • Patel D.V.
        • McGhee C.N.J.
        In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review.
        Br J Ophthalmol. 2009; 93: 853-860
        • Messmer E.M.
        • Schmid-Tannwald C.
        • Zapp D.
        • Kampik A.
        In vivo confocal microscopy of corneal small fiber damage in diabetes mellitus.
        Graefes Arch Clin Exp Ophthalmol. 2010; 248: 1307-1312
        • Chinnery H.R.
        • Naranjo Golborne C.
        • Downie L.E.
        Omega-3 supplementation is neuroprotective to corneal nerves in dry eye disease: a pilot study.
        Ophthalmic Physiol Opt. 2017; 37: 473-481
        • Patel D.V.
        • McGhee C.N.J.
        Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy.
        Invest Ophthalmol Vis Sci. 2005; 46: 4485-4488
        • Utsunomiya T.
        • Nagaoka T.
        • Hanada K.
        • Omae T.
        • Yokota H.
        • Abiko A.
        • et al.
        Imaging of the corneal subbasal whorl-like nerve plexus: more accurate depiction of the extent of corneal nerve damage in patients with diabetes.
        Invest Ophthalmol Vis Sci. 2015; 56: 5417-5423
        • Kalteniece A.
        • Ferdousi M.
        • Petropoulos I.
        • Azmi S.
        • Adam S.
        • Fadavi H.
        • et al.
        Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy.
        Sci Rep. 2018; 8: 3283
        • Labetoulle M.
        • Baudouin C.
        • Calonge M.
        • Merayo-Lloves J.
        • Boboridis K.G.
        • Akova Y.A.
        • et al.
        Role of corneal nerves in ocular surface homeostasis and disease.
        Acta Ophthalmol. 2019; 97: 137-145
        • Belmonte C.
        • Nichols J.J.
        • Cox S.M.
        • Brock J.A.
        • Begley C.G.
        • Bereiter D.A.
        • et al.
        TFOS DEWS II pain and sensation report.
        Ocul Surf. 2017; 15: 404-437
        • Belmonte C.
        • Aracil A.
        • Acosta M.C.
        • Luna C.
        • Gallar J.
        Nerves and sensations from the eye surface.
        Ocul Surf. 2004; 2: 248-253
        • Quallo T.
        • Vastani N.
        • Horridge E.
        • Gentry C.
        • Parra A.
        • Moss S.
        • et al.
        TRPM8 is a neuronal osmosensor that regulates eye blinking in mice.
        Nat Commun. 2015; 6: 7150
        • Kovács I.
        • Luna C.
        • Quirce S.
        • Mizerska K.
        • Callejo G.
        • Riestra A.
        • et al.
        Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease.
        Pain. 2016; 157: 399-417
        • Parra A.
        • Madrid R.
        • Echevarria D.
        • del Olmo S.
        • Morenilla-Palao C.
        • Acosta M.C.
        • et al.
        Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea.
        Nat Med. 2010; 16: 1396-1399
        • Belmonte C.
        • Giraldez F.
        Responses of cat corneal sensory receptors to mechanical and thermal stimulation.
        J Physiol. 1981; 321: 355-368
        • Varnell R.J.
        • Freeman J.Y.
        • Maitchouk D.
        • Beuerman R.W.
        • Gebhardt B.M.
        SHORT COMMUNICATION Detection of substance P in human tears by laser desorption mass spectrometry and immunoassay.
        Curr Eye Res. 1997; 16: 960-963
        • Nishida T.
        Neurotrophic mediators and corneal wound healing.
        Ocul Surf. 2005; 3: 194-202
        • Li F.
        • Yang W.
        • Jiang H.
        • Guo C.
        • Huang A.J.W.
        • Hu H.
        • et al.
        TRPV1 activity and substance P release are required for corneal cold nociception.
        Nat Commun. 2019; 10: 5678
        • Marco B.
        • Alessandro R.
        • Philippe F.
        • Fabio B.
        • Paolo R.
        • Giulio F.
        The effect of aging on nerve morphology and substance P expression in mouse and human corneas.
        Invest Ophthalmol Vis Sci. 2018; 59: 5329-5335
        • Marriott I.
        • Bost K.L.
        Expression of authentic substance P receptors in murine and human dendritic cells.
        J Neuroimmunol. 2001; 114: 131-141
        • Bron A.J.
        Eyelid secretions and the prevention and production of disease.
        Eye. 1988; 2: 164-171
        • Doughty M.J.
        • Zaman M.L.
        Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach.
        Surv Ophthalmol. 2000; 44: 367-408
        • Garner L.F.
        • Owens H.
        • Yap M.K.
        • Frith M.J.
        • Kinnear R.F.
        Radius of curvature of the posterior surface of the cornea.
        Optom Vis Sci. 1997; 74: 496-498
        • Jorge J.
        • Almeida J.B.
        • Parafita M.A.
        Refractive, biometric and topographic changes among Portuguese university science students: a 3-year longitudinal study.
        Ophthalmic Physiol Opt. 2007; 27: 287-294
        • Patel H.Y.
        • Patel D.V.
        • McGhee C.N.J.
        Identifying relationships between tomography-derived corneal thickness, curvature, and diameter and in vivo confocal microscopic assessment of the endothelium in healthy corneas of young adults.
        Eye. 2009; 23: 270-278
        • Patel S.
        • Tutchenko L.
        The refractive index of the human cornea: a review.
        Cont Lens Anterior Eye. 2019; 42: 575-580
        • Boettner E.A.
        • Reimer Wolter J.
        Transmission of the ocular media.
        Invest Ophthalmol Vis Sci. 1962; 1: 776-783
        • Maurice D.M.
        The cornea and sclera.
        Eye. 1984; : 1-158
        • Freeman R.D.
        Oxygen consumption by the component layers of the cornea.
        J Physiol. 1972; 225: 15-32
        • Efron N.
        • Carney L.G.
        Oxygen levels beneath the closed eyelid.
        Invest Ophthalmol Vis Sci. 1979; 18: 93-95
        • Efron N.
        Contact lenses and corneal physiology.
        Biolog Sci Rev. 1997; 9: 29-31
        • Riley M.V.
        Glucose and oxygen utilization by the rabbit cornea.
        Exp Eye Res. 1969; 8: 193-200
        • Berman M.
        The Reenchantment of the World.
        Cornell University Press, 1981
        • Lawrenson J.G.
        The Anterior Eye. Contact Lens Practice E-Book.
        2010: 10
        • Klyce S.D.
        • Beuerman R.W.
        Structure and function of the cornea.
        in: Kaufmann H.E. Barron B.A. McDonald M.R. The Cornea. Boston Butterworth-Heinemann, 1998: 14
        • Klyce S.D.
        Stromal lactate accumulation can account for corneal oedema osmotically following epithelial hypoxia in the rabbit.
        J Physiol. 1981; 321: 49-64
        • Bonanno J.
        • Miller W.L.
        • Bergmanson J.P.G.
        Corneal physiology.
        in: Bergmanson J.P.G. Clinical Ocular Anatomy and Physiology. Texas Eye Research and Technology Center, Houston2020: 113-131
        • Sugrue S.P.
        • Zieske J.D.
        ZO1 in corneal epithelium: association to the zonula occludens and adherens junctions.
        Exp Eye Res. 1997; 64: 11-20
        • Zadunaisky J.A.
        Active transport of chloride across the cornea.
        Nature. 1966; 209: 1136-1137
        • Klyce S.D.
        • Crosson C.E.
        Transport processes across the rabbit corneal epithelium: a review.
        Curr Eye Res. 1985; 4: 323-331
        • Polse K.A.
        • Mandell R.B.
        Etiology of corneal striae accompanying hydrogel lens wear.
        Invest Ophthalmol. 1976; 15: 553-556
        • Stapleton F.
        • Bakkar M.
        • Carnt N.
        • Chalmers R.
        • Kumar A.
        • Marasini S.
        • et al.
        CLEAR - contact lens complications.
        Cont Lens Anterior Eye. 2021; 44 (In press)
        • Mertz G.W.
        Overnight swelling of the living human cornea.
        J Am Optom Assoc. 1980; 51: 211-214
        • Bergmanson J.P.
        • Chu L.W.
        Contact lens-induced corneal epithelial injury.
        Am J Optom Physiol Opt. 1982; 59: 500-506
        • Kenyon K.R.
        • Ghinelli E.
        • Chavez H.V.
        Morphology and pathologic response in corneal and conjunctival disease.
        in: Foster C.S. Azar D.T. The Cornea: Scientific Foundations and Clinical Practice. Lippincott Williams & Wilkins, Philadelphia2005: 103-140
        • You X.
        • Bergmanson J.P.
        • Zheng X.M.
        • MacKenzie I.C.
        • Boltz R.L.
        • Aquavella J.V.
        Effect of corticosteroids on rabbits corneal keratocytes after photorefractive keratectomy.
        J Refract Surg. 1995; 11: 460-467
        • Knop E.
        • Knop N.
        • Zhivov A.
        • Kraak R.
        • Korb D.R.
        • Blackie C.
        • et al.
        The lid wiper and muco-cutaneous junction anatomy of the human eyelid margins: an in vivo confocal and histological study.
        J Anat. 2011; 218: 449-461https://doi.org/10.1111/j.1469-7580.2011.01355.x
        • Nelson J.D.
        • Cameron J.D.
        The conjunctiva: anatomy and physiology.
        Cornea. 2005; 1: 39-54
        • Wybar K.
        Wolff’s anatomy of the eye and orbit.
        Br J Ophthalmol. 1977; 61: 302
        • Wolosin J.M.
        • Budak M.T.
        • Akinci M.A.M.
        Ocular surface epithelial and stem cell development.
        Int J Dev Biol. 2004; 48: 981-991
        • Puro D.G.
        Role of ion channels in the functional response of conjunctival goblet cells to dry eye.
        Am J Physiol, Cell Physiol. 2018; 315: C236-46
        • Witt J.
        • Mertsch S.
        • Borrelli M.
        • Dietrich J.
        • Geerling G.
        • Schrader S.
        • et al.
        Decellularised conjunctiva for ocular surface reconstruction.
        Acta Biomater. 2018; 67: 259-269
        • Korb D.R.
        • Greiner J.V.
        • Herman J.P.
        • Hebert E.
        • Finnemore V.M.
        • Exford J.M.
        • et al.
        Lid-wiper epitheliopathy and dry-eye symptoms in contact lens wearers.
        CLAO J. 2002; 28: 211-216
        • Yeniad B.
        • Beginoglu M.
        • Bilgin L.K.
        Lid-wiper epitheliopathy in contact lens users and patients with dry eye.
        Eye Contact Lens. 2010; 36: 140-143
        • Azari A.A.
        • Barney N.P.
        Conjunctivitis: a systematic review of diagnosis and treatment.
        JAMA. 2013; 310: 1721-1730
        • Shumway C.L.
        • Motlagh M.
        • Anatomy Wade M.
        Head and Neck, Eye Conjunctiva. StatPearls.
        StatPearls Publishing, Treasure Island (FL)2019
        • Forrester J.V.
        • Dick A.D.
        • McMenamin P.G.
        • Roberts F.
        • Pearlman E.
        Anatomy of the eye and orbit.
        (Chapter 1)in: Forrester J.V. Dick A.D. McMenamin P.G. Roberts F. Pearlman E. The Eye (Fourth Edition). W.B. Saunders, 2016 (p. 1–102.e2.)
        • Shields J.A.
        • Shields C.L.
        Eyelid, Conjunctival, and Orbital Tumors: An Atlas and Textbook.
        Lippincott Williams & Wilkins, 2008
        • Doane M.G.
        Blinking and the mechanics of the lacrimal drainage system.
        Ophthalmology. 1981; 88: 844-851
        • Pellegrini G.
        • Golisano O.
        • Paterna P.
        • Lambiase A.
        • Bonini S.
        • Rama P.
        • et al.
        Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface.
        J Cell Biol. 1999; 145: 769-782
        • Wotherspoon A.C.
        • Isaacson P.G.
        • Hardman-Lea S.
        Mucosa-associated lymphoid tissue (MALT) in the human conjunctiva.
        J Pathol. 1994; 174: 33-37https://doi.org/10.1002/path.1711740106
        • Takahashi Y.
        • Watanabe A.
        • Matsuda H.
        • Nakamura Y.
        • Nakano T.
        • Asamoto K.
        • et al.
        Anatomy of secretory glands in the eyelid and conjunctiva: a photographic review.
        Ophthal Plast Reconstr Surg. 2013; 29: 215-219
        • Wei Z.G.
        • Sun T.T.
        • Lavker R.M.
        Rabbit conjunctival and corneal epithelial cells belong to two separate lineages.
        Invest Ophthalmol Vis Sci. 1996; 37: 523-533
        • Wei Z.G.
        • Wu R.L.
        • Lavker R.M.
        • Sun T.T.
        In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells.
        Invest Ophthalmol Vis Sci. 1993; 34: 1814-1828
        • Pe’er J.
        • Zajicek G.
        • Greifner H.
        • Kogan M.
        Streaming conjunctiva.
        Anat Rec. 1996; 245: 36-40
        • Wirtschafter J.D.
        • Ketcham J.M.
        • Weinstock R.J.
        • Tabesh T.
        • McLoon L.K.
        Mucocutaneous junction as the major source of replacement palpebral conjunctival epithelial cells.
        Invest Ophthalmol Vis Sci. 1999; 40: 3138-3146
        • Stewart R.M.K.
        • Sheridan C.M.
        • Hiscott P.S.
        • Czanner G.
        • Kaye S.B.
        Human conjunctival stem cells are predominantly located in the medial canthal and inferior forniceal areas.
        Invest Ophthalmol Vis Sci. 2015; 56: 2021https://doi.org/10.1167/iovs.14-16266
        • Bron A.J.
        Reflections on the tears.
        Eye. 1997; 11: 583-602
        • Mantelli F.
        • Massaro-Giordano M.
        • Macchi I.
        • Lambiase A.
        • Bonini S.
        The cellular mechanisms of dry eye: from pathogenesis to treatment.
        J Cell Physiol. 2013; 228: 2253-2256https://doi.org/10.1002/jcp.24398
        • Levin M.H.
        • Verkman A.S.
        Aquaporin-dependent water permeation at the mouse ocular surface: in vivo microfluorimetric measurements in cornea and conjunctiva.
        Invest Ophthalmol Vis Sci. 2004; 45: 4423-4432
        • Bron A.J.
        • Argüeso P.
        • Irkec M.
        • Bright F.V.
        Clinical staining of the ocular surface: mechanisms and interpretations.
        Prog Retin Eye Res. 2015; 44: 36-61
        • Argüeso P.
        • Gipson I.K.
        Epithelial mucins of the ocular surface: structure, biosynthesis and function.
        Exp Eye Res. 2001; 73: 281-289
        • Gipson I.K.
        • Argüeso P.
        Role of mucins in the function of the corneal and conjunctival epithelia.
        Int Rev Cytol. 2003; 231: 1-49
        • Yañez-Soto B.
        • Mannis M.J.
        • Schwab I.R.
        • Li J.Y.
        • Leonard B.C.
        • Abbott N.L.
        • et al.
        Interfacial phenomena and the ocular surface.
        Ocul Surf. 2014; 12: 178-201
        • Inatomi T.
        • Spurr-Michaud S.
        • Tisdale A.S.
        • Gipson I.K.
        Human corneal and conjunctival epithelia express MUC1 mucin.
        Invest Ophthalmol Vis Sci. 1995; 36: 1818-1827
        • Inatomi T.
        • Spurr-Michaud S.
        • Tisdale A.S.
        • Zhan Q.
        • Feldman S.T.
        • Gipson I.K.
        Expression of secretory mucin genes by human conjunctival epithelia.
        Invest Ophthalmol Vis Sci. 1996; 37: 1684-1692
        • Pflugfelder S.C.
        • Liu Z.
        • Monroy D.
        • Li D.Q.
        • Carvajal M.E.
        • Price-Schiavi S.A.
        • et al.
        Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid.
        Invest Ophthalmol Vis Sci. 2000; 41: 1316-1326
        • Argüeso P.
        • Spurr-Michaud S.
        • Russo C.L.
        • Tisdale A.
        • Gipson I.K.
        MUC16 mucin is expressed by the human ocular surface epithelia and carries the H185 carbohydrate epitope.
        Invest Ophthalmol Vis Sci. 2003; 44: 2487-2495
        • Schmidt T.A.
        • Sullivan D.A.
        • Knop E.
        • Richards S.M.
        • Knop N.
        • Liu S.
        • et al.
        Transcription, translation, and function of Lubricin, a boundary lubricant, at the ocular surface.
        JAMA Ophthalmol. 2013; 131: 766https://doi.org/10.1001/jamaophthalmol.2013.2385
        • Krenzer K.L.
        • Freddo T.F.
        Cytokeratin expression in normal human bulbar conjunctiva obtained by impression cytology.
        Invest Ophthalmol Vis Sci. 1997; 38: 142-152
        • Yoshida Y.
        • Ban Y.
        • Kinoshita S.
        Tight junction transmembrane protein claudin subtype expression and distribution in human corneal and conjunctival epithelium.
        Invest Ophthalmol Vis Sci. 2009; 50: 2103-2108
        • Langer G.
        • Jagla W.
        • Behrens-Baumann W.
        • Walter S.
        • Hoffmann W.
        Secretory peptides TFF1 and TFF3 synthesized in human conjunctival goblet cells.
        Invest Ophthalmol Vis Sci. 1999; 40: 2220-2224
        • McGill J.I.
        • Holgate S.T.
        • Church M.K.
        • Anderson D.F.
        • Bacon A.
        Allergic eye disease mechanisms.
        Br J Ophthalmol. 1998; 82: 1203-1214
        • Knop E.
        • Knop N.
        The role of eye-associated lymphoid tissue in corneal immune protection.
        J Anat. 2005; 206: 271-285https://doi.org/10.1111/j.1469-7580.2005.00394.x
        • Kessing S.V.
        Mucous gland system of the conjunctiva. A quantitative normal anatomical study.
        Acta Ophthalmol. 1968; (1+)
        • Specian R.D.
        • Oliver M.G.
        Functional biology of intestinal goblet cells.
        Am J Physiol. 1991; 260: C183-C193
        • Knop N.
        • Korb D.R.
        • Blackie C.A.
        • Knop E.
        The lid wiper contains goblet cells and goblet cell crypts for ocular surface lubrication during the blink.
        Cornea. 2012; 31: 668-679
        • Gipson I.K.
        Goblet cells of the conjunctiva: a review of recent findings.
        Prog Retin Eye Res. 2016; 54: 49-63
        • Shahidi M.
        • Wanek J.
        • Gaynes B.
        • Wu T.
        Quantitative assessment of conjunctival microvascular circulation of the human eye.
        Microvasc Res. 2010; 79: 109-113
        • Bird B.
        • Stawicki S.P.
        Anatomy, Head and Neck, Ophthalmic Arteries. StatPearls.
        StatPearls Publishing, Treasure Island (FL)2020
        • Harvey T.M.
        • Alzaga Fernandez A.G.
        • Patel R.
        • Goldman D.
        • Ciralsky J.
        Conjunctival anatomy and physiology. Ocular surface disease: cornea.
        Conjunctiva and Tear Film. 2013; : 23-27https://doi.org/10.1016/b978-1-4557-2876-3.00004-3
        • Knop E.
        • Korb D.R.
        • Blackie C.A.
        • Knop N.
        The lid margin is an underestimated structure for preservation of ocular surface health and development of dry eye disease.
        Dev Ophthalmol. 2010; 45: 108-122
        • Macintosh S.R.
        The innervation of the conjunctiva in monkeys.
        Albrecht von Graefes Archiv Für Klinische Und Experimentelle Ophthalmologie. 1974; 192: 105-116
        • Diebold Y.
        • Ríos J.D.
        • Hodges R.R.
        • Rawe I.
        • Dartt D.A.
        Presence of nerves and their receptors in mouse and human conjunctival goblet cells.
        Invest Ophthalmol Vis Sci. 2001; 42: 2270-2282
        • Cher I.
        Ocular surface concepts: development and citation.
        Ocul Surf. 2014; 12: 10-13
        • Foster C.S.S.J.
        Basic Immunology.
        Lippincott Williams & Wilkins, Philadelphia2005
        • McClellan K.A.
        Mucosal defense of the outer eye.
        Surv Ophthalmol. 1997; 42: 233-246https://doi.org/10.1016/s0039-6257(97)00090-8
        • Lambiase A.
        • Micera A.
        • Sacchetti M.
        • Mantelli F.
        • Bonini S.
        Toll-like receptors in ocular surface diseases: overview and new findings.
        Clin Sci. 2011; 120: 441-450https://doi.org/10.1042/cs20100425
        • Hingorani M.
        • Metz D.
        • Lightman S.L.
        Characterisation of the normal conjunctival leukocyte population.
        Exp Eye Res. 1997; 64: 905-912https://doi.org/10.1006/exer.1996.0280
        • Allansmith M.
        • de Ramus A.
        • Maurice D.
        The dynamics of IgG in the cornea.
        Invest Ophthalmol Vis Sci. 1979; 18: 947-955
        • Knop N.
        • Knop E.
        Conjunctiva-associated lymphoid tissue in the human eye.
        Invest Ophthalmol Vis Sci. 2000; 41: 1270-1279
        • Lawrenson J.G.
        • Ruskell G.L.
        Investigation of limbal touch sensitivity using a Cochet-Bonnet aesthesiometer.
        Br J Ophthalmol. 1993; 77: 339-343
        • Müller L.J.
        • Vrensen G.F.
        • Pels L.
        • Cardozo B.N.
        • Willekens B.
        Architecture of human corneal nerves.
        Invest Ophthalmol Vis Sci. 1997; 38: 985-994
        • Stapleton F.
        • Tan M.E.
        • Papas E.B.
        • Ehrmann K.
        • Golebiowski B.
        • Vega J.
        • et al.
        Corneal and conjunctival sensitivity to air stimuli.
        Br J Ophthalmol. 2004; 88: 1547-1551
        • Norn M.S.
        Conjunctival sensitivity in normal eyes.
        Acta Ophthalmol. 1973; 51: 58-66
        • Vega J.A.
        • Simpson T.L.
        • Fonn D.
        A noncontact pneumatic esthesiometer for measurement of ocular sensitivity: a preliminary report.
        Cornea. 1999; 18: 675-681
        • Brennan N.A.
        • Maurice D.M.
        Corneal esthesiometry with a carbon dioxide laser.
        Invest Ophthalmol Vis Sci. 1989; 30: 148
        • Golebiowski B.
        • Papas E.B.
        • Stapleton F.
        Factors affecting corneal and conjunctival sensitivity measurement.
        Optom Vis Sci. 2008; 85: 241-246
        • McGowan D.P.
        • Lawrenson J.G.
        • Ruskell G.L.
        Touch sensitivity of the eyelid margin and palpebral conjunctiva.
        Acta Ophthalmologica. 2009; 72: 57-60https://doi.org/10.1111/j.1755-3768.1994.tb02738.x
        • Navascues-Cornago M.
        • Maldonado-Codina C.
        • Morgan P.B.
        Mechanical sensitivity of the human conjunctiva.
        Cornea. 2014; 33: 855-859
        • Munger B.L.
        • Halata Z.
        The sensorineural apparatus of the human eyelid.
        Am J Anat. 1984; 170: 181-204
        • Situ P.
        • Simpson T.L.
        • Jones L.
        • Fonn D.
        Effect of symptoms of dryness, age, and gender on corneal and conjunctival sensitivity to cooling stimuli.
        Invest Ophthalmol Vis Sci. 2005; 46 (ASSOC RESEARCH VISION OPHTHALMOLOGY INC 12300 TWINBROOK PARKWAY, ROCKVILLE)
        • Vannas S.
        • Teir H.
        Observations on structures and age changes in the human sclera.
        Acta Ophthalmol. 1960; 38: 268-279
        • Norn M.
        Topography of scleral emissaries and sclera-perforating blood vessels.
        Acta Ophthalmol. 1985; 63: 320-322
        • Crandall A.S.
        • Yanoff M.
        • Schaffer D.B.
        Intrascleral nerve loop mistakenly identified as a foreign body.
        Arch Ophthalmol. 1977; 95: 497-498
        • Bettelheim F.A.
        • Ehrlich S.H.
        Water Vapor Sorption O.F. Mucopolysaccharides 1.
        J Phys Chem. 1963; 67: 1948-1953
        • Komai Y.
        • Ushiki T.
        The three-dimensional organization of collagen fibrils in the human cornea and sclera.
        Invest Ophthalmol Vis Sci. 1991; 32: 2244-2258
        • Kanai A.
        • Kaufman H.E.
        Electron microscopic studies of the elastic fiber in human sclera.
        Invest Ophthalmol. 1972; 11: 816-821
        • Friberg T.R.
        • Lace J.W.
        A comparison of the elastic properties of human choroid and sclera.
        Exp Eye Res. 1988; 47: 429-436
        • Wulc A.E.
        • Dryden R.M.
        • Khatchaturian T.
        Where is the gray line?.
        Arch Ophthalmol. 1987; 105: 1092-1098
        • Hwang K.
        • Huan F.
        • Kim D.J.
        Muscle fiber types of human orbicularis oculi muscle.
        J Craniofac Surg. 2011; 22: 1827-1830
        • Snell R.S.
        • Lemp M.A.
        Clinical Anatomy of the Eye.
        John Wiley & Sons, 2013
        • Navascues-Cornago M.
        • Maldonado-Codina C.
        • Gupta R.
        • Morgan P.B.
        Characterization of Upper Eyelid Tarsus and lid wiper dimensions.
        Eye Contact Lens. 2016; 42: 289-294
        • Korb D.R.
        • Herman J.P.
        • Greiner J.V.
        • Scaffidi R.C.
        • Finnemore V.M.
        • Exford J.M.
        • et al.
        Lid wiper epitheliopathy and dry eye symptoms.
        Eye Contact Lens. 2005; 31: 2-8
        • Saliman N.H.
        • Morgan P.B.
        • MacDonald A.S.
        • Maldonado-Codina C.
        Subclinical inflammation of the ocular surface in Soft contact Lens Wear.
        Cornea. 2020; 39: 146-154
        • Alzahrani Y.
        • Colorado L.
        • Pritchard N.
        • Efron N.
        Inflammatory cell upregulation of the lid wiper in contact Lens dry eye.
        Optom Vis Sci. 2016; 93: 917-924
        • May C.A.
        • Osterland I.
        Merkel cell distribution in the human eyelid.
        Eur J Histochem. 2013; 57: e33
        • McGowan D.P.
        • Lawrenson J.G.
        • Ruskell G.L.
        Touch sensitivity of the eyelid margin and palpebral conjunctiva.
        LOG I CA. 1994; 72: 57-60
        • Ezra D.G.
        • Beaconsfield M.
        • Collin R.
        Surgical anatomy of the upper eyelid: old controversies, new concepts.
        Expert Rev Ophthalmol. 2009; 4: 47-57
        • Kakizaki H.
        • Malhotra R.
        • Selva D.
        Upper eyelid anatomy: an update.
        Ann Plast Surg. 2009; 63: 336-343
        • Esperidião-Antonio V.
        • Conceição-Silva F.
        • De-Ary-Pires B.
        • Pires-Neto M.A.
        • de Ary-Pires R.
        The human superior tarsal muscle (Müller’s muscle): a morphological classification with surgical correlations.
        Anat Sci Int. 2010; 85: 1-7
        • Lopez R.
        • Lauwers F.
        • Paoli J.R.
        • Boutault F.
        • Guitard J.
        The vascular system of the upper eyelid. Anatomical study and clinical interest.
        Surg Radiol Anat. 2008; 30: 265-269
        • Chang E.I.
        • Esmaeli B.
        • Butler C.E.
        Eyelid reconstruction.
        Plast Reconstr Surg. 2017; 140: 724e-735e
        • Erdogmus S.
        • Govsa F.
        The arterial anatomy of the eyelid: importance for reconstructive and aesthetic surgery.
        J Plast Reconstr Aesthet Surg. 2007; 60: 241-245
        • Tucker S.M.
        • Linberg J.V.
        Vascular anatomy of the eyelids.
        Ophthalmology. 1994; 101: 1118-1121
        • Mojallal A.
        • Cotofana S.
        Anatomy of lower eyelid and eyelid-cheek junction.
        Ann Chir Plast Esthet. 2017; 62: 365-374
        • Cheung N.
        • McNab A.A.
        Venous anatomy of the orbit.
        Invest Ophthalmol Vis Sci. 2003; 44: 988-995
        • Hayreh S.S.
        Orbital vascular anatomy.
        Eye. 2006; 20: 1130-1144
        • Costa Palermo E.
        Anatomy of the periorbital region.
        Surg Cosmet Dermatol. 2013; 5: 245-256
        • Echegoyen J.C.
        • Hirabayashi K.E.
        • Lin K.Y.
        • Tao J.P.
        Imaging of eyelid lymphatic drainage.
        Saudi J Ophthalmol. 2012; 26: 441-443
        • Nijhawan N.
        • Marriott C.
        • Harvey J.T.
        Lymphatic drainage patterns of the human eyelid: assessed by lymphoscintigraphy.
        Ophthal Plast Reconstr Surg. 2010; 26: 281-285
        • Hwang K.
        • Wu X.J.
        • Kim H.
        • Kim D.J.
        Sensory innervation of the upper eyelid.
        J Craniofac Surg. 2018; 29: 514-517
        • Choi Y.
        • Kang H.G.
        • Nam Y.S.
        • Kang J.-G.
        • Kim I.-B.
        Facial nerve supply to the orbicularis oculi around the lower eyelid: anatomy and its clinical implications.
        Plast Reconstr Surg. 2017; 140: 261-271
        • Craig J.P.
        • Tomlinson A.
        Importance of the lipid layer in human tear film stability and evaporation.
        Optom Vis Sci. 1997; 74: 8-13
        • Knop E.
        • Knop N.
        • Millar T.
        • Obata H.
        • Sullivan D.A.
        The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland.
        Invest Ophthalmol Vis Sci. 2011; 52: 1938-1978
        • Greiner J.V.
        • Glonek T.
        • Korb D.R.
        • Whalen A.C.
        • Hebert E.
        • Hearn S.L.
        • et al.
        Volume of the human and rabbit meibomian gland system.
        Adv Exp Med Biol. 1998; 438: 339-343
        • Knop E.
        • Knop N.
        • Millar T.
        • Obata H.
        • Sullivan D.A.
        The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland.
        Invest Ophthalmol Vis Sci. 2011; 52: 1938-1978
        • Knop N.
        • Knop E.
        [Meibomian glands. Part I: anatomy, embryology and histology of the Meibomian glands].
        Ophthalmologe. 2009; 106: 872-883
        • Jester J.V.
        • Nicolaides N.
        • Smith R.E.
        Meibomian gland studies: histologic and ultrastructural investigations.
        Invest Ophthalmol Vis Sci. 1981; 20: 537-547
        • Seifert P.
        • Spitznas M.
        Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands.
        Exp Eye Res. 1999; 68: 685-692
        • Stoeckelhuber M.
        • Stoeckelhuber B.M.
        • Welsch U.
        Human glands of Moll: histochemical and ultrastructural characterization of the glands of Moll in the human eyelid.
        J Invest Dermatol. 2003; 121: 28-36
        • Stoeckelhuber M.
        • Messmer E.M.
        • Schubert C.
        • Stoeckelhuber B.M.
        • Koehler C.
        • Welsch U.
        • et al.
        Immunolocalization of defensins and cathelicidin in human glands of Moll.
        Ann Anat. 2008; 190: 230-237
        • Obata H.
        Anatomy and histopathology of the human lacrimal gland.
        Cornea. 2006; 25: S82-9
        • Seifert P.
        • Spitznas M.
        • Koch F.
        • Cusumano A.
        The architecture of human accessory lacrimal glands.
        Ger J Ophthalmol. 1993; 2: 444-454
        • Seifert P.
        • Spitznas M.
        Demonstration of nerve fibers in human accessory lacrimal glands.
        Graefes Arch Clin Exp Ophthalmol. 1994; 232: 107-114
        • Yamamoto Y.
        • Shiraishi A.
        • Sakane Y.
        • Ohta K.
        • Yamaguchi M.
        • Ohashi Y.
        Involvement of eyelid pressure in lid-wiper epitheliopathy.
        Curr Eye Res. 2016; 41: 171-178
        • DeAngelis K.D.
        • Rider A.
        • Potter W.
        • Jensen J.
        • Fowler B.T.
        • Fleming J.C.
        Eyelid spontaneous blink analysis and age-related changes through high-speed imaging.
        Ophthal Plast Reconstr Surg. 2019; 35: 487-490
        • Evinger C.
        • Manning K.A.
        • Sibony P.A.
        Eyelid movements. Mechanisms and normal data.
        Invest Ophthalmol Vis Sci. 1991; 32: 387-400
        • Jones M.B.
        • Fulford G.R.
        • Please C.P.
        • McElwain D.L.S.
        • Collins M.J.
        Elastohydrodynamics of the eyelid wiper.
        Bull Math Biol. 2008; 70: 323-343
        • Pult H.
        • Tosatti S.G.P.
        • Spencer N.D.
        • Asfour J.-M.
        • Ebenhoch M.
        • Murphy P.J.
        Spontaneous blinking from a tribological viewpoint.
        Ocul Surf. 2015; 13: 236-249
        • Belmonte C.
        • Gallar J.
        Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations.
        Invest Ophthalmol Vis Sci. 2011; 52: 3888-3892
        • Yokoi N.
        • Bron A.J.
        • Georgiev G.A.
        The precorneal tear film as a fluid shell: the effect of blinking and saccades on tear film distribution and dynamics.
        Ocul Surf. 2014; 12: 252-266
        • Sahlin S.
        • Chen E.
        Gravity, blink rate, and lacrimal drainage capacity.
        Am J Ophthalmol. 1997; 124: 758-764
        • Sahlin S.
        • Chen E.
        • Kaugesaar T.
        • Almqvist H.
        • Kjellberg K.
        • Lennerstrand G.
        Effect of eyelid botulinum toxin injection on lacrimal drainage.
        Am J Ophthalmol. 2000; 129: 481-486
        • Becker B.B.
        Tricompartment model of the lacrimal pump mechanism.
        Ophthalmology. 1992; 99: 1139-1145
        • Lam S.M.
        • Tong L.
        • Duan X.
        • Petznick A.
        • Wenk M.R.
        • Shui G.
        Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles.
        J Lipid Res. 2014; 55: 289-298
        • Willcox M.
        • Keir N.
        • Maseedupally V.
        • Masoudi S.
        • McDermott A.
        • Mobeen R.
        • et al.
        CLEAR - Contact lenses wettability, cleaning, disinfection and interactions with tears.
        Cont Lens Anterior Eye. 2021; 44 (In press)
        • Ubels J.L.
        • Gipson I.K.
        • Spurr-Michaud S.J.
        • Tisdale A.S.
        • Van Dyken R.E.
        • Hatton M.P.
        Gene expression in human accessory lacrimal glands of Wolfring.
        Invest Ophthalmol Vis Sci. 2012; 53: 6738-6747
        • Paulsen F.
        Cell and molecular biology of human lacrimal gland and nasolacrimal duct mucins.
        Int Rev Cytol. 2006; 249: 229-279
        • Cohen A.J.
        • Mercandetti M.
        • Brazzo B.G.
        The Lacrimal System: Diagnosis, Management and Surgery.
        Springer Science & Business Media, 2006
        • Örge F.H.
        • Boente C.S.
        The lacrimal system.
        Pediatr Clin North Am. 2014; 61: 529-539
        • Hodges R.R.
        • Dartt D.A.
        Regulatory pathways in lacrimal gland epithelium.
        Int Rev Cytol. 2003; 231: 129-196
        • Hodges R.R.
        • Zoukhri D.
        • Sergheraert C.
        • Zieske J.D.
        • Dartt D.A.
        Identification of vasoactive intestinal peptide receptor subtypes in the lacrimal gland and their signal-transducing components.
        Invest Ophthalmol Vis Sci. 1997; 38: 610-619
        • Lemullois M.
        • Rossignol B.
        • Mauduit P.
        Immunolocalization of myoepithelial cells in isolated acini of rat exorbital lacrimal gland: cellular distribution of muscarinic receptors.
        Biol Cell. 1996; 86: 175-181
        • Bergen M.P.
        A literature review of the vascular system in the human orbit.
        Acta Morphol Neerl Scand. 1981; 19: 273-305
        • Burkat C.N.
        • Lemke B.N.
        Anatomy of the orbit and its related structures.
        Otolaryngol Clin North Am. 2005; 38: 825-856
        • Richter E.
        • Feyerabend T.
        Normal Lymph Node Topography: CT Atlas.
        Springer, Berlin, Heidelberg2004
        • Sherman D.D.
        • Gonnering R.S.
        • Wallow I.H.
        • Lemke B.N.
        • Doos W.G.
        • Dortzbach R.K.
        • et al.
        Identification of orbital lymphatics: enzyme histochemical light microscopic and electron microscopic studies.
        Ophthal Plast Reconstr Surg. 1993; 9: 153-169
        • Dartt D.A.
        Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases.
        Prog Retin Eye Res. 2009; 28: 155-177
        • Efron N.
        • Jones L.
        • Bron A.J.
        • Knop E.
        • Arita R.
        • Barabino S.
        • et al.
        The TFOS International Workshop on Contact Lens discomfort: report of the contact lens interactions with the ocular surface and adnexa subcommittee.
        Invest Ophthalmol Vis Sci. 2013; 54 (TFO): S98-122
        • Ruskell G.L.
        The distribution of autonomic post-ganglionic nerve fibres to the lacrimal gland in monkeys.
        J Anatomy. 1971; 109: 229-242
        • Willcox M.D.P.
        • Argueso P.
        • Georgiev G.A.
        • Holopainen J.M.
        • Laurie G.W.
        • Millar T.J.
        • et al.
        TFOS DEWS II tear film report.
        Ocul Surf. 2017; 15: 366-403
        • Mircheff A.K.
        • Warren D.W.
        • Schechter J.E.
        Lacrimal gland hormone regulation.
        Encyclop Eye. 2010; : 513-521https://doi.org/10.1016/b978-0-12-374203-2.00050-6
        • Jones L.
        • Franklin V.
        • Evans K.
        • Sariri R.
        • Tighe B.
        Spoilation and clinical performance of monthly vs. Three monthly Group II disposable contact lenses.
        Optom Vis Sci. 1996; 73: 16-21
        • Sullivan D.A.
        Tearful relationships? Sex, hormones, the lacrimal gland, and aqueous-deficient dry eye.
        Ocul Surf. 2004; 2: 92-123
        • Tucker N.A.
        • Tucker S.M.
        • Linberg J.V.
        The anatomy of the common canaliculus.
        Arch Ophthalmol. 1996; 114: 1231-1234
        • Jones L.T.
        An anatomical approach to problems of the eyelids and lacrimal apparatus.
        Arch Ophthalmol. 1961; 66: 111-124
        • Thale A.
        • Paulsen F.
        • Rochels R.
        • Tillmann B.
        Functional anatomy of the human efferent tear ducts: a new theory of tear outflow mechanism.
        Graefes Arch Clin Exp Ophthalmol. 1998; 236: 674-678
      2. Cohen A.J. Mercandetti M. Brazzo B. The Lacrimal System: Diagnosis, Management, and Surgery. second edition. Springer, Cham, 2015
        • Bron A.J.
        • de Paiva C.S.
        • Chauhan S.K.
        • Bonini S.
        • Gabison E.E.
        • Jain S.
        • et al.
        TFOS DEWS II pathophysiology report.
        Ocul Surf. 2017; 15: 438-510
        • Craig J.P.
        • Willcox M.D.
        • Argueso P.
        • Maissa C.
        • Stahl U.
        • Tomlinson A.
        • et al.
        The TFOS International Workshop on Contact Lens discomfort: report of the contact lens interactions with the tear film subcommittee.
        Invest Ophthalmol Vis Sci. 2013; 54 (TFO): S123-56
        • Downie L.E.
        • Craig J.P.
        Tear film evaluation and management in soft contact lens wear: a systematic approach.
        Clin Exp Optom. 2017; 100: 438-458
        • King-Smith P.E.
        • Fink B.A.
        • Hill R.M.
        • Koelling K.W.
        • Tiffany J.M.
        The thickness of the tear film.
        Curr Eye Res. 2004; 29: 357-368
        • van Best J.A.
        • Benitez del Castillo J.M.
        • Coulangeon L.M.
        Measurement of basal tear turnover using a standardized protocol. European concerted action on ocular fluorometry.
        Graefes Arch Clin Exp Ophthalmol. 1995; 233: 1-7
        • Wolff E.
        The muco-cutaneous junction of the lidmargin and the distribution of the tear fluid.
        Trans Ophthalmol Soc UK. 1946; 66: 291-308
        • Holly F.J.
        • Lemp M.A.
        Tear physiology and dry eyes.
        Surv Ophthalmol. 1977; 22: 69-87
        • Dilly P.N.
        Structure and function of the tear film.
        Adv Exp Med Biol. 1994; 350: 239-247
        • King-Smith P.E.
        • Hinel E.A.
        • Nichols J.J.
        Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning.
        Invest Ophthalmol Vis Sci. 2010; 51: 2418-2423
        • Olżyńska A.
        • Wizert A.
        • Štefl M.
        • Iskander D.R.
        • Cwiklik L.
        Mixed polar-nonpolar lipid films as minimalistic models of Tear Film Lipid Layer: a Langmuir trough and fluorescence microscopy study.
        Biochim Biophys Acta Biomembr. 2020; 1862183300
        • Rosenfeld L.
        • Cerretani C.
        • Leiske D.L.
        • Toney M.F.
        • Radke C.J.
        • Fuller G.G.
        Structural and rheological properties of meibomian lipid.
        Invest Ophthalmol Vis Sci. 2013; 54: 2720-2732
        • Mishima S.
        • Gasset A.
        • Klyce Jr., S.D.
        • Baum J.L.
        Determination of tear volume and tear flow.
        Invest Ophthalmol. 1966; 5: 264-276
        • Braun R.J.
        Dynamics of the tear film.
        Annu Rev Fluid Mech. 2012; 44: 267-297
        • Dartt D.A.
        Regulation of mucin and fluid secretion by conjunctival epithelial cells.
        Prog Retin Eye Res. 2002; 21: 555-576
        • Farris R.L.
        • Stuchell R.N.
        • Mandel I.D.
        Basal and reflex human tear analysis. I. Physical measurements: osmolarity, basal volumes, and reflex flow rate.
        Ophthalmology. 1981; 88: 852-857
        • Argüeso P.
        Glycobiology of the ocular surface: mucins and lectins.
        Jpn J Ophthalmol. 2013; 57: 150-155
        • Butovich I.A.
        • Millar T.J.
        • Ham B.M.
        Understanding and analyzing meibomian lipids--a review.
        Curr Eye Res. 2008; 33: 405-420
        • Butovich I.A.
        • Uchiyama E.
        • Di Pascuale M.A.
        • McCulley J.P.
        Liquid chromatography-mass spectrometric analysis of lipids present in human meibomian gland secretions.
        Lipids. 2007; 42: 765-776
        • Schuett B.S.
        • Millar T.J.
        An investigation of the likely role of (O-acyl) ω-hydroxy fatty acids in meibomian lipid films using (O-oleyl) ω-hydroxy palmitic acid as a model.
        Exp Eye Res. 2013; 115: 57-64
        • Gipson I.K.
        Distribution of mucins at the ocular surface.
        Exp Eye Res. 2004; 78: 379-388
        • Rolando M.
        • Zierhut M.
        The ocular surface and tear film and their dysfunction in dry eye disease.
        Surv Ophthalmol. 2001; 45: S203-10
        • Zhou L.
        • Zhao S.Z.
        • Koh S.K.
        • Chen L.
        • Vaz C.
        • Tanavde V.
        • et al.
        In-depth analysis of the human tear proteome.
        J Proteomics. 2012; 75: 3877-3885
        • Sack R.A.
        • Sathe S.
        • Beaton A.
        Tear turnover and immune and inflammatory processes in the open-eye and closed-eye environments: relationship to extended wear contact lens use.
        Eye Contact Lens. 2003; 29 (S80–2; discussion S83–4, S192–4)
        • Fullard R.J.
        • Tucker D.L.
        Changes in human tear protein levels with progressively increasing stimulus.
        Invest Ophthalmol Vis Sci. 1991; 32: 2290-2301
        • Na K.-S.
        • Mok J.-W.
        • Kim J.Y.
        • Rho C.R.
        • Joo C.-K.
        Correlations between tear cytokines, chemokJ.-W., and soluble receptors and clinical severity of dry eye disease.
        Invest Ophthalmol Vis Sci. 2012; 53: 5443-5450
        • Acera A.
        • Rocha G.
        • Vecino E.
        • Lema I.
        • Durán J.A.
        Inflammatory markers in the tears of patients with ocular surface disease.
        Ophthalmic Res. 2008; 40: 315-321
        • Jackson D.C.
        • Zeng W.
        • Wong C.Y.
        • Mifsud E.J.
        • Williamson N.A.
        • Ang C.-S.
        • et al.
        Tear Interferon-Gamma as a biomarker for evaporative dry eye disease.
        Invest Ophthalmol Vis Sci. 2016; 57: 4824-4830
        • Gad A.
        • Vingrys A.J.
        • Wong C.Y.
        • Jackson D.C.
        • Downie L.E.
        Tear film inflammatory cytokine upregulation in contact lens discomfort.
        Ocul Surf. 2019; 17: 89-97
        • Lambiase A.
        • Micera A.
        • Sacchetti M.
        • Cortes M.
        • Mantelli F.
        • Bonini S.
        Alterations of tear neuromediators in dry eye disease.
        Arch Ophthalmol. 2011; 129: 981-986
        • Craig J.P.
        • Tomlinson A.
        Effect of age on tear osmolality.
        Optom Vis Sci. 1995; 72: 713-717
        • Stahl U.
        • Willcox M.
        • Stapleton F.
        Osmolality and tear film dynamics.
        Clin Exp Optom. 2012; 95: 3-11
        • Craig J.P.
        • Nelson J.D.
        • Azar D.T.
        • Belmonte C.
        • Bron A.J.
        • Chauhan S.K.
        • et al.
        TFOS DEWS II report executive summary.
        Ocul Surf. 2017; 15: 802-812
        • Choy C.K.M.
        • Cho P.
        • Benzie I.F.F.
        Antioxidant content and ultraviolet absorption characteristics of human tears.
        Optom Vis Sci. 2011; 88: 507-511
        • Stapleton F.
        • Willcox M.D.
        • Sansey N.
        • Holden B.A.
        Ocular microbiota and polymorphonuclear leucocyte recruitment during overnight contact lens wear.
        Aust N Z J Ophthalmol. 1997; 25: S33-S35
        • Koh S.
        • Tung C.I.
        • Inoue Y.
        • Jhanji V.
        Effects of tear film dynamics on quality of vision.
        Br J Ophthalmol. 2018; 102: 1615-1620
        • Bron A.J.
        • Tiffany J.M.
        • Gouveia S.M.
        • Yokoi N.
        • Voon L.W.
        Functional aspects of the tear film lipid layer.
        Exp Eye Res. 2004; 78: 347-360
        • Norn M.S.
        Tear fluid pH in normals, contact lens wearers, and pathological cases.
        Acta Ophthalmol. 1988; 66: 485-489
        • Craig J.P.
        • Simmons P.A.
        • Patel S.
        • Tomlinson A.
        Refractive index and osmolality of human tears.
        Optom Vis Sci. 1995; 72: 718-724
        • McDonnell A.
        • Lee J.-H.
        • Makrai E.
        • Yeo L.Y.
        • Downie L.E.
        Tear film extensional viscosity is a novel potential biomarker of dry eye disease.
        Ophthalmology. 2019; 126: 1196-1198
        • Tomlinson A.
        • Khanal S.
        Assessment of tear film dynamics: quantification approach.
        Ocul Surf. 2005; 3: 81-95
        • Stern M.E.
        • Gao J.
        • Siemasko K.F.
        • Beuerman R.W.
        • Pflugfelder S.C.
        The role of the lacrimal functional unit in the pathophysiology of dry eye.
        Exp Eye Res. 2004; 78: 409-416
        • Stern M.E.
        • Beuerman R.W.
        • Fox R.I.
        • Gao J.
        • Mircheff A.K.
        • Pflugfelder S.C.
        The pathology of dry eye.
        Cornea. 1998; 17: 584https://doi.org/10.1097/00003226-199811000-00002
        • Basal Murube J.
        Reflex, and psycho-emotional tears.
        Ocul Surf. 2009; 7: 60-66https://doi.org/10.1016/s1542-0124(12)70296-3
        • Messmer E.M.
        [Emotional tears].
        Ophthalmologe. 2009; 106: 593-602
        • Heiligenhaus A.
        Anatomie un physiologie der tränendrüse.
        in: Messmer E.M. Diagnose und Therapie des Trockenen Auges. Bremen, UNI-MED2007: 13-18
        • Patel V.
        Crying behavior and psychiatric disorder in adults: a review.
        Compr Psychiatry. 1993; 34: 206-211
        • Gaffney E.A.
        • Tiffany J.M.
        • Yokoi N.
        • Bron A.J.
        A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye.
        Prog Retin Eye Res. 2009; (https://doi.org/S1350-9462(09)00071-8[pii])
        • Bron A.J.
        • Yokoi N.
        • Gaffney E.A.
        • Tiffany J.M.
        A solute gradient in the tear meniscus. I. A hypothesis to explain Marx’s line.
        Ocul Surf. 2011; 9: 70-91
        • Nagyová B.
        • Tiffany J.M.
        Components responsible for the surface tension of human tears.
        Curr Eye Res. 1999; 19: 4-11
        • Sharma A.
        • Tiwari S.
        • Khanna R.
        • Tiffany J.M.
        Hydrodynamics of meniscus-induced thinning of the tear film.
        Adv Exp Med Biol. 1998; 438: 425-431
        • Braun R.J.
        • King-Smith P.E.
        • Begley C.G.
        • Li L.
        • Gewecke N.R.
        Dynamics and function of the tear film in relation to the blink cycle.
        Prog Retin Eye Res. 2015; 45: 132-164
        • Willcox M.D.P.
        Tear film, contact lenses and tear biomarkers.
        Clin Exp Optom. 2019; https://doi.org/10.1111/cxo.12918
        • Georgiev G.A.
        • Eftimov P.
        • Yokoi N.
        Contribution of mucins towards the physical properties of the tear film: a modern update.
        Int J Mol Sci. 2019; 20https://doi.org/10.3390/ijms20246132
        • Uchino Y.
        The ocular surface glycocalyx and its alteration in dry eye disease: a review.
        Invest Ophthalmol Vis Sci. 2018; 59 (DES157–62)
        • Argüeso P.
        • Guzman-Aranguez A.
        • Mantelli F.
        • Cao Z.
        • Ricciuto J.
        • Panjwani N.
        Association of cell surface mucins with galectin-3 contributes to the ocular surface epithelial barrier.
        J Biol Chem. 2009; 284: 23037-23045
        • Setälä N.L.
        • Holopainen J.M.
        • Metso J.
        • Yohannes G.
        • Hiidenhovi J.
        • Andersson L.C.
        • et al.
        Interaction of phospholipid transfer protein with human tear fluid mucins.
        J Lipid Res. 2010; 51: 3126-3134
        • Galbis-Estrada C.
        • Martinez-Castillo S.
        • Morales J.M.
        • Vivar-Llopis B.
        • Monleón D.
        • Díaz-Llopis M.
        • et al.
        Differential effects of dry eye disorders on metabolomic profile by 1H nuclear magnetic resonance spectroscopy.
        Biomed Res Int. 2014; 2014542549
        • Pieragostino D.
        • Agnifili L.
        • Cicalini I.
        • Calienno R.
        • Zucchelli M.
        • Mastropasqua L.
        • et al.
        Tear film steroid profiling in dry eye disease by liquid chromatography tandem mass spectrometry.
        Int J Mol Sci. 2017; 18https://doi.org/10.3390/ijms18071349
        • Pescosolido N.
        • Imperatrice B.
        • Koverech A.
        • Messano M.
        L-carnitine and short chain ester in tears from patients with dry eye.
        Optom Vis Sci. 2009; 86: E132-E138
        • English J.T.
        • Norris P.C.
        • Hodges R.R.
        • Dartt D.A.
        • Serhan C.N.
        Identification and profiling of specialized pro-resolving mediators in human tears by lipid mediator metabolomics.
        Prostaglandins Leukot Essent Fatty Acids. 2017; 117: 17-27
        • Yazdani M.
        • Elgstøen K.B.P.
        • Rootwelt H.
        • Shahdadfar A.
        • Utheim ØA.
        • Utheim T.P.
        Tear metabolomics in dry eye disease: a review.
        Int J Mol Sci. 2019; 20https://doi.org/10.3390/ijms20153755
        • Vehof J.
        • Hysi P.G.
        • Hammond C.J.
        A metabolome-wide study of dry eye disease reveals serum androgens as biomarkers.
        Ophthalmology. 2017; 124: 505-511
        • von Frey M.
        Berichte über die Verhandlungen der königlich Sachsichen.
        Ber Sachs Ges Wiss Leipzig. 1894; 46: 185-196
        • Boberg-Ans J.
        Experience in clinical examination of corneal sensitivity; corneal sensitivity and the naso-lacrimal reflex after retrobulbar anaesthesia.
        Br J Ophthalmol. 1955; 39: 705-726
        • Cochet P.
        • Bonnet R.
        L’Esthesie corneenne.
        La Clin. Ophthalmol. 1960; 4: 3-27
        • Brennan N.A.
        • Bruce A.S.
        Esthesiometry as an indicator of corneal health.
        Optom Vis Sci. 1991; 68: 699-702
        • Murphy P.J.
        • Patel S.
        • Marshall J.
        A new non-contact corneal aesthesiometer (NCCA).
        Ophthalmic Physiol Opt. 1996; 16: 101-107
        • Beuerman R.W.
        • Maurice D.M.
        • Tanelian D.L.
        Thermal stimulation of the cornea.
        Pain in the Trigeminal Region. 1977; : 413-422
        • Swanevelder S.K.
        • Misra S.L.
        • Tyler E.F.
        • McGhee C.N.J.
        Precision, agreement and utility of a contemporary non‐contact corneal aesthesiometer.
        Clin Exp Optom. 2019; 19: 34
        • Belmonte C.
        • Acosta M.C.
        • Schmelz M.
        • Gallar J.
        Measurement of corneal sensitivity to mechanical and chemical stimulation with a CO2 esthesiometer.
        Invest Ophthalmol Vis Sci. 1999; 40: 513-519
        • Mirzajan A.
        • Khezri F.
        • Jafarzadehpur E.
        • Karimian F.
        • Khabazkhoob M.
        Normal corneal sensitivity and its changes with age in Tehran, Iran.
        Clin Exp Optom. 2015; 98: 54-57
        • Roszkowska A.M.
        • Colosi P.
        • Ferreri F.M.B.
        • Galasso S.
        Age-related modifications of corneal sensitivity.
        Ophthalmologica. 2004; 218: 350-355
        • Murphy P.J.
        • Patel S.
        • Kong N.
        • Ryder R.E.J.
        • Marshall J.
        Noninvasive assessment of corneal sensitivity in young and elderly diabetic and nondiabetic subjects.
        Invest Ophthalmol Vis Sci. 2004; 45: 1737-1742
        • Patel D.V.
        • Tavakoli M.
        • Craig J.P.
        • Efron N.
        • McGhee C.N.J.
        Corneal sensitivity and slit scanning in vivo confocal microscopy of the subbasal nerve plexus of the normal central and peripheral human cornea.
        Cornea. 2009; 28: 735-740
        • Bourcier T.
        • Acosta M.C.
        • Borderie V.
        • Borrás F.
        • Gallar J.
        • Bury T.
        • et al.
        Decreased corneal sensitivity in patients with dry eye.
        Invest Ophthalmol Vis Sci. 2005; 46: 2341-2345
        • Dogru M.
        • Matsumoto Y.
        • Okada N.
        • Igarashi A.
        • Fukagawa K.
        • Shimazaki J.
        • et al.
        Alterations of the ocular surface epithelial MUC16 and goblet cell MUC5AC in patients with atopic keratoconjunctivitis.
        Allergy. 2008; 63: 1324-1334https://doi.org/10.1111/j.1398-9995.2008.01781.x
        • Ahuja Y.
        • Baratz K.H.
        • McLaren J.W.
        • Bourne W.M.
        • Patel S.V.
        Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial dystrophy.
        Cornea. 2012; 31: 1257-1263
        • Hamrah P.
        • Cruzat A.
        • Dastjerdi M.H.
        • Zheng L.
        • Shahatit B.M.
        • Bayhan H.A.
        • et al.
        Corneal sensation and subbasal nerve alterations in patients with herpes simplex keratitis: an in vivo confocal microscopy study.
        Ophthalmology. 2010; 117: 1930-1936
        • Tavakoli M.
        • Kallinikos P.A.
        • Efron N.
        • Boulton A.J.M.
        • Malik R.A.
        Corneal sensitivity is reduced and relates to the severity of neuropathy in patients with diabetes.
        Diabetes Care. 2007; 30: 1895-1897
        • Stapleton F.
        • Chao C.
        • Golebiowski B.
        Topical review: effects of contact Lens Wear on corneal, conjunctival, and lid margin sensitivity.
        Optom Vis Sci. 2019; 96: 790-801
        • Lum E.
        • Golebiowski B.
        • Swarbrick H.A.
        Changes in corneal subbasal nerve morphology and sensitivity during orthokeratology: onset of change.
        Ocul Surf. 2017; 15: 227-235https://doi.org/10.1016/j.jtos.2016.07.005
        • Situ P.
        • Simpson T.
        • Begley C.
        Hypersensitivity to cold stimuli in symptomatic contact Lens wearers.
        Optom Vis Sci. 2016; 93: 909-916
        • Goyal S.
        • Abbouda A.
        • Pondelis N.
        • Hamrah P.
        Neuropathic corneal pain.
        Ocular Surface Disease. 2018; : 109-124https://doi.org/10.1007/978-3-319-15823-5_8
        • Goyal S.
        • Hamrah P.
        Understanding neuropathic corneal pain--Gaps and current therapeutic approaches.
        Semin Ophthalmol. 2016; 31: 59-70
        • Egbert P.R.
        • Lauber S.
        • Maurice D.M.
        A simple conjunctival biopsy.
        Am J Ophthalmol. 1977; 84: 798-801
        • Ganesalingam K.
        • Ismail S.
        • Craig J.P.
        • Sherwin T.
        Use of a purpose-built impression cytology device for gene expression quantification at the ocular surface using quantitative PCR and droplet digital PCR.
        Cornea. 2019; 38: 127-133
        • Nelson J.D.
        Impression cytology.
        Cornea. 1988; 7: 71-81
        • Doughty M.J.
        Goblet cells of the normal human bulbar conjunctiva and their assessment by impression cytology sampling.
        Ocul Surf. 2012; 10: 149-169
        • Aragona P.
        • Di Pietro R.
        • Spinella R.
        • Mobrici M.
        Conjunctival epithelium improvement after systemic pilocarpine in patients with Sjogren’s syndrome.
        Br J Ophthalmol. 2006; 90: 166-170https://doi.org/10.1136/bjo.2005.078865
        • Albietz J.M.
        Conjunctival histologic findings of dry eye and non-dry eye contact lens wearing subjects.
        CLAO J. 2001; 27: 35-40