Interactions between contact lenses and lens care solutions: Influence in optical properties

Published:February 09, 2021DOI:



      Investigate changes in optical properties of contact lenses materials (transmittance and reflectance) and lens care solutions (absorption and fluorescence) resulting from its interaction.


      From an experimental study, triplicate measurements of transmittance and reflectance of five contact lenses (Senofilcon A, Lotrafilcon B, Balafilcon A, Comfilcon A, and Omafilcon A), as well as UV-vis absorption and fluorescence of four lens care solutions (LCS) (ReNu MultiPlus, Biotrue, OPTI-FREE PureMoist, and AOSept Plus), were evaluated before and after 8 h, one day and one week in storage. The outcomes were provided by Shimadzu UV3101-PC UV–vis-NIR spectrophotometer equipped with an integrating sphere, between 200−700 nm, and SPEX-Fluorolog 2 FL3-22 spectrofluorometer.


      All variables exhibited statistically significant differences over time. Comfilcon A showed the lowest ultraviolet radiation (UVR) A & B attenuation. Balafilcon A and Lotrafilcon B displayed a slight suppression of UVR. Senofilcon A was effective in UVR protection and showed less effect on the fluorescence of lens care solutions. Overall, the reflectance decreased after storage (p < 0.05). AOSept Plus absorbance and fluorescence demonstrated lower interactions than multipurpose solutions (MPS), and Lotrafilcon B induced more remarkable changes in optical properties of LCS than the other materials.


      The findings suggest that optical variables of lens care solutions and contact lenses changed mutually after storage, probably associated with biochemical and biophysical interactions between components and the release of some polymer compounds. These findings can provide additional information about the interaction of CL materials and LCS in clinical behavior.


      To read this article in full you will need to make a payment


        • Nicolson P.C.
        • Vogt J.
        Soft contact lens polymers: an evolution.
        Biomaterials. 2001; 22: 3273-3283
        • Morgan P.B.
        • Woods C.A.
        • Tranoudis I.G.
        • Efron N.
        • Jones L.
        • et al.
        International contact lens prescribing in 2019.
        Contact Lens Spectrum. 2020; 35: 26-32
        • Muntz A.
        • Subbaraman L.N.
        • Sorbara L.
        • Jones L.
        Tear exchange and contact lenses: A review.
        J Optom. 2015; 8: 2-11
        • Hall B.
        • Jones L.
        Contact lens cases: The missing link in contact lens safety?.
        Eye Contact Lens. 2010; 36: 101-105
        • Wu Y.T.Y.
        • Willcox M.
        • Zhu H.
        • Stapleton F.
        Contact lens hygiene compliance and lens case contamination: A review.
        Contact Lens Anterior Eye. 2015; 38: 307-316
        • Borazjani R.N.
        • Kilvington S.
        Efficacy of multipurpose solutions against Acanthamoeba species.
        Contact Lens Anterior Eye. 2005; 28: 169-175
        • Dutot M.
        • Reveneau E.
        • Pauloin T.
        • Fagon R.
        • Tanter C.
        • Warnet J.M.
        • et al.
        Multipurpose solutions and contact lens: Modulation of cytotoxicity and apoptosis on the ocular surface.
        Cornea. 2010; 29: 541-549
        • Andrasko G.
        • Ryen K.
        Corneal staining and comfort observed with traditional and silicone hydrogel lenses and multipurpose solution combinations.
        Optometry. 2008; 79: 444-454
        • Carnt N.
        • Jalbert I.
        • Stretton S.
        • Naduvilath T.
        • Papas E.
        Solution Toxicity in Soft Contact Lens Daily.
        Optom Vis Sci. 2007; 84: 309-315
        • Gorbet M.
        • Postnikoff C.
        The impact of silicone hydrogel-solution combinations on corneal epithelial cells.
        Eye Contact Lens. 2013; 39: 42-47
        • Pritchard N.
        • Young G.
        • Coleman S.
        • Hunt C.
        Subjective and objective measures of corneal staining related to multipurpose care systems.
        Contact Lens Anterior Eye. 2003; 26: 3-9
        • Diec J.
        • Papas E.
        • Naduvilath T.
        • Xu P.
        • Holden B.A.
        • de la Jara P.L.
        Combined effect of comfot and adverse events on contact lens performance.
        Optom Vis Sci. 2013; 90: 674-681
        • De La Jara P.L.
        • Papas E.
        • Diec J.
        • Naduvilath T.
        • Willcox M.D.P.
        • Holden B.A.
        Effect of Lens care systems on the clinical performance of a contact Lens.
        Optom Vis Sci. 2013; 90: 344-350
        • Garofalo R.J.
        • Dassanayake N.
        • Carey C.
        • Stein J.
        • Stone R.
        • David R.
        Corneal staining and subjective symptoms with multipurpose solutions as a function of time.
        Eye Contact Lens. 2005; 31: 166-174
        • Willcox M.D.P.
        • Phillips B.
        • Ozkan J.
        • Jalbert I.
        • Meagher L.
        • Gengenbach T.
        • et al.
        Interactions of lens care with silicone hydrogel lenses and effect on comfort.
        Optom Vis Sci. 2010; 87: 839-846
        • Epstein A.B.
        Contact lens care products effect on corneal sensitivity and patient comfort.
        Eye Contact Lens. 2006; 32: 128-132
        • Sorbara L.
        • Peterson R.
        • Woods C.
        • Fonn D.
        Multipurpose disinfecting solutions and their interactions with a silicone hydrogel lens.
        Eye Contact Lens. 2009; 35: 92-97
        • Carnt N.A.
        Contact Lens–Related Adverse Events and the Silicone Hydrogel Lenses and Daily Wear Care System Used.
        Arch Ophthalmol. 2009; 127: 1616-1623
        • Guillon M.
        • Maissa C.
        • Wong S.
        • Patel T.
        • Garofalo R.
        The influence of lens care systems on eyelid tissue changes during silicone hydrogel contact lens wear.
        Contact Lens Anterior Eye. 2018; 41: 362-368
        • Keir N.
        • Woods C.A.
        • Dumbleton K.
        • Jones L.
        Clinical performance of different care systems with silicone hydrogel contact lenses.
        Contact Lens Anterior Eye. 2010; 33: 189-195
        • Jones L.
        • Powell C.H.
        Uptake and Release Phenomena in Contact Lens Care by Silicone.
        Eye Contact Lens. 2013; 39: 29-36
        • Dalton K.
        • Subbaraman L.
        • Rogers R.
        • Jones L.
        Physical Properties of Soft Contact.
        Optom Vis Sci. 2008; 85: 122-128
        • Chiericati S.
        • Borghesi A.
        • Cozza F.
        • Ferraro L.
        • Acciarri M.
        • Farris S.
        • et al.
        Care system versus transmitted light wavefront pattern of contact lenses.
        Eye Contact Lens. 2017; 43: 181-185
        • Smith S.M.
        • Zhu D.
        • Pierre D.
        • Gilbert J.L.
        • Chinn J.A.
        Effect of multipurpose care solutions upon physical dimensions of silicone hydrogel contact lenses.
        J Biomed Mater Res. 2020; 108: 1915-1924
        • Ivanov I.V.
        • Mappes T.
        • Schaupp P.
        • Lappe C.
        • Wahl S.
        Ultraviolet radiation oxidative stress affects eye health.
        J Biophotonics. 2018; 11: 1-13
        • International Comission on Non-Ionizing Radiation Protection
        Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 ans 400 nm (incoherent optical radiation).
        Health Phys. 2004; 87: 171-186
        • Chandler H.
        Ultraviolet absorption by contact lenses and the significance on the ocular anterior segment.
        Eye Contact Lens. 2011; 37: 259-266
        • Chandler H.
        • Reuter S.
        • Sinnott T.
        • Nichols J.
        Prevention of UV-induced damage to the anterior segment using class I UV-absorbing hydrogel contact lenses.
        Invest Ophthalmol Vis Sci. 2011; 51: 172-178
        • Kwok L.S.
        • Kuznetsov V.A.
        • Ho A.
        • Coroneo M.T.
        Prevention of the adverse photic effects of peripheral light-focusing using UV-blocking contact lenses.
        Invest Ophthalmol Vis Sci. 2003; 44: 1501-1507
        • Walsh J.E.
        • Bergmanson J.P.G.
        Does the eye benefit from wearing ultraviolet-blocking contact lenses?.
        Eye Contact Lens. 2011; 37: 267-272
        • Yam J.C.S.
        • Kwok A.K.H.
        Ultraviolet light and ocular diseases.
        Int Ophthalmol. 2014; 34: 383-400
        • Coroneo M.
        Ultraviolet radiation and the anterior eye.
        Eye Contact Lens. 2011; 37: 214-224
        • Walsh J.
        Erratum: Can UV radiation-blocking soft contact lenses attenuate UV radiation to safe levels during summer months in the southern United States?.
        Eye Contact Lens. 2003; 29: 135
        • Harris M.G.
        • Chin R.S.
        • Lee D.S.
        • Tam M.H.
        • Dobkins C.E.
        Ultraviolet transmittance of the Vistakon disposable contact lenses.
        Contact Lens Anterior Eye. 2000; 23: 10-15
        • Moore L.
        • Ferreira J.T.
        Ultraviolet (UV) transmittance characteristics of daily disposable and silicone hydrogel contact lenses.
        Contact Lens Anterior Eye. 2006; 29: 115-122
        • Bruce A.S.
        • Dain S.J.
        • Holden B.A.
        Spectral transmittance of tinted hydrogel contact lenses.
        Optom Vis Sci. 1986; 63: 941-947
        • Lira M.
        • Dos Santos Castanheira E.M.
        • Santos L.
        • Azeredo J.
        • Yebra-Pimentel E.
        • Real Oliveira M.E.C.D.
        Changes in UV-visible transmittance of silicone-hydrogel contact lenses induced by wear.
        Optom Vis Sci. 2009; 86: 332-339
        • Ogbuehi K.C.
        • Khan F.M.J.
        • Alanazi S.
        • Almubrad T.M.
        • Osuagwu U.L.
        Transmittance properties of contact lens multipurpose solutions and their effects on a hydrogel lens.
        Annu Res Rev Biol. 2014; 4: 2484-2500
        • Quesnel N.
        • MJ P.
        • CJ G.
        Effect of back vertex power on transmittance of contact lenses with UV protection.
        in: Poster: AAO Meeting, Oct. 15-18, Chicago2005
        • Kuc C.J.
        • Lebow K.A.
        Contact Lens Solutions and Contact Lens Discomfort: Examining the Correlations Between Solution Components, Keratitis, and Contact Lens Discomfort.
        Eye Contact Lens. 2018; 44: 355-366
        • Young G.
        • Garofalo R.
        • Harmer O.
        • Peters S.
        The effect of soft contact lens care products on lens modulus.
        Contact Lens Anterior Eye. 2010; 33: 210-214
        • Lorentz H.
        • Heynen M.
        • Trieu D.
        • Hagedorn S.
        • Jones L.
        The impact of tear film components on in vitro lipid uptake.
        Optom Vis Sci. 2012; 89: 856-867
        • Lira M.
        • Franco S.
        • Vazquez-Dorrio J.B.
        • Real Oliveira M.E.C.D.
        • Costa M.F.M.
        Surface roughness and refractive index changes in contact lens induced by lens care systems.
        Eye Contact Lens. 2014; 40: 140-147
        • Lira M.
        • Silva R.
        Effect of Lens care systems on silicone hydrogel contact Lens hydrophobicity.
        Eye Contact Lens. 2017; 43: 89-94
        • Gavara R.
        • Compañ V.
        Oxygen, water, and sodium chloride transport in soft contact lenses materials.
        Journal of Biomedical Materials Research - Part B Applied Biomaterials. 2017; 105: 2218-2231
        • Brennan N.A.
        • Coles M.L.C.
        Deposits and symptomatology with soft contact lens wear.
        Int Contact Lens Clin. 2000; 27: 75-99
        • Singh A.
        • Li P.
        • Beachley V.
        • McDonnell P.
        • Elisseeff J.H.
        A hyaluronic acid-binding contact lens with enhanced water retention.
        Contact Lens Anterior Eye. 2015; 38: 79-84
        • Korogiannaki M.
        • Zhang J.
        • Sheardown H.
        Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene “click” chemistry for enhancing surface characteristics.
        J Biomater Appl. 2017; 32: 446-462