Anatomical and physiological considerations in scleral lens wear: Eyelids and tear film

Published:January 16, 2021DOI:https://doi.org/10.1016/j.clae.2021.01.002

      Abstract

      Scleral lenses can affect a range of anterior segment structures including the eyelids and the tears. The eyelids, consisting of the outer skin layer, the middle tarsal plate, and the posterior palpebral conjunctiva, provide physical protection and house the meibomian glands and cilia which have important and unique functions. Tears consist of a mix of aqueous, mucus, and lipidomic components that serve vital functions of lubricity, protection, and nourishment to the ocular surface. Both the eyelids and the tear film interact directly with scleral lenses on the eye and can affect but also be impacted by scleral lens wear. The purpose of this paper is to review the anatomy and physiology of the eyelids and tear film, discuss the effects and impacts of the scleral lenses on these structures, and identify areas that require further research.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Vincent S.J.
        The rigid lens renaissance: a surge in sclerals.
        Cont Lens Anterior Eye. 2018; 41: 139-143
        • Nau C.B.
        • Harthan J.
        • Shorter E.
        • Barr J.
        • Nau A.
        • Chimato N.T.
        • et al.
        Demographic characteristics and prescribing patterns of scleral Lens fitters: the SCOPE study.
        Eye Contact Lens. 2017; 44: S265-72
        • Woods C.A.
        • Efron N.
        • Morgan P.
        Are eye‐care practitioners fitting scleral contact lenses?.
        Clin Exp Optom. 2020; 103: 449-453
        • Walker M.K.
        • Schornack M.M.
        • Vincent S.J.
        Anatomical and physiological considerations in scleral lens wear: conjunctiva and sclera.
        Cont Lens Anterior Eye. 2020; 43: 517-528
        • Cochran M.L.
        • Lopez M.J.
        • Czyz C.N.
        Anatomy, head and neck, eyelid.
        StatPearls, Treasure Island (FL)2020
        • Bergmanson J.P.G.
        Clinical ocular anatomy and physiology.
        27th ed. Texas Eye Research and Technology Center, 2020
        • Hart W.M.
        The eyelids.
        in: Hart W.M. Adler’s Physiology of the Eye. 9th ed. Mosby, St. Louis, MO1992
        • Fox S.A.
        The palpebral fissure.
        Am J Ophthalmol. 1966; 62: 73-78
        • Hickson-Curran S.
        • Brennan N.A.
        • Igarashi Y.
        • Young G.
        Comparative evaluation of Asian and white ocular topography.
        Optom Vis Sci. 2014; 91: 1396-1405
        • Chang E.I.
        • Esmaeli B.
        • Butler C.E.
        Eyelid reconstruction.
        Plast Reconstr Surg. 2017; 140: 724e-735e
        • Stewart J.M.
        • Carter S.R.
        Anatomy and examination of the eyelids.
        Int Ophthalmol Clin. 2002; 42: 1-13
        • Hwang K.
        • Nam Y.S.
        • Choi H.G.
        • Han S.H.
        • Hwang S.H.
        Cutaneous innervation of lower eyelid.
        J Craniofac Surg. 2008; 19: 1675-1677
        • Hwang K.
        • Wu X.J.
        • Kim H.
        • Kim D.J.
        Sensory innervation of the upper eyelid.
        J Craniofac Surg. 2018; 29: 514-517
        • Lopez R.
        • Lauwers F.
        • Paoli J.R.
        • Boutault F.
        • Guitard J.
        The vascular system of the upper eyelid. Anatomical study and clinical interest.
        Surg Radiol Anat. 2008; 30: 265-269
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        Regional variations in postlens tear layer thickness during scleral lens wear.
        Eye Contact Lens. 2020; 46: 368-374
        • Constable J.D.
        • Carroll J.M.
        The emergency treatment of the exposed cornea in thermal burns.
        Plast Reconstr Surg. 1970; 46: 309-312
        • Burns C.L.
        • Chylack Jr., L.T.
        Thermal burns: the management of thermal burns of the lids and globes.
        Ann Ophthalmol. 1979; 11: 1358-1368
        • Kalwerisky K.
        • Davies B.
        • Mihora L.
        • Czyz C.N.
        • Foster J.A.
        • DeMartelaere S.
        Use of the Boston Ocular Surface Prosthesis in the management of severe periorbital thermal injuries: a case series of 10 patients.
        Ophthalmology. 2012; 119: 516-521
        • Owusu J.A.
        • Stewart C.M.
        • Boahene K.
        Facial nerve paralysis.
        Med Clin North Am. 2018; 102: 1135-1143
        • Goren S.B.
        • Clemis J.D.
        Care of the eye in facial paralysis.
        Arch Otolaryngol. 1973; 97: 227-228
        • Krachmer J.H.
        The therapeutic and cosmetic indications for flush-fitting scleral contact lenses.
        J Iowa Med Soc. 1968; 58: 944-946
        • Grey F.
        • Carley F.
        • Biswas S.
        • Tromans C.
        Scleral contact lens management of bilateral exposure and neurotrophic keratopathy.
        Cont Lens Anterior Eye. 2012; 35: 288-291
        • Klein M.
        Contact Lens in cases of neuroparalytic keratitis.
        Br J Ophthalmol. 1943; 27: 221-222
        • Kok J.H.
        • Visser R.
        Treatment of ocular surface disorders and dry eyes with high gas-permeable scleral lenses.
        Cornea. 1992; 11: 518-522
        • Romero-Rangel T.
        • Stavrou P.
        • Cotter J.
        • Rosenthal P.
        • Baltatzis S.
        • Foster C.S.
        Gas-permeable scleral contact lens therapy in ocular surface disease.
        Am J Ophthalmol. 2000; 130: 25-32
        • Gire A.
        • Kwok A.
        • Marx D.P.
        PROSE treatment for lagophthalmos and exposure keratopathy.
        Ophthal Plast Reconstr Surg. 2013; 29: e38-40
        • Williams Z.R.
        • Aquavella J.V.
        Management of exposure keratopathy associated with severe craniofacial trauma.
        J Cataract Refract Surg. 2007; 33: 1647-1650
        • Weyns M.
        • Koppen C.
        • Tassignon M.J.
        Scleral contact lenses as an alternative to tarsorrhaphy for the long-term management of combined exposure and neurotrophic keratopathy.
        Cornea. 2013; 32: 359-361
        • Zaki V.
        A non-surgical approach to the management of exposure keratitis due to facial palsy by using mini-scleral lenses.
        Medicine. 2017; 96: e6020
        • Chahal H.S.
        • Estrada M.
        • Sindt C.W.
        • Boehme J.A.
        • Greiner M.A.
        • Nerad J.A.
        • et al.
        Scleral contact lenses in an academic oculoplastics clinic: epidemiology and emerging considerations.
        Ophthalmic Plast Reconstr Surg. 2018; 34: 231-236
        • Schornack M.M.
        • Pyle J.
        • Patel S.V.
        Scleral lenses in the management of ocular surface disease.
        Ophthalmology. 2014; 121: 1398-1405
        • Knight B.
        • Lopez M.J.
        • Patel B.C.
        Anatomy, head and neck, eye levator palpebrae superioris muscles.
        StatPearls PublishingCopyright © 2020, StatPearls Publishing LLC, StatPearls, Treasure Island (FL)2020
        • Rosenberg Bezalel S.
        • Elbirt D.
        • Leiba H.
        • Sthoeger Z.M.
        Graves’ opthalmopathy.
        Isr Med Assoc J. 2017; 19: 188-192
        • Harthan J.S.
        Therapeutic use of mini-scleral lenses in a patient with Graves’ ophthalmopathy.
        J Optom. 2014; 7: 62-66
        • Katsoulos K.
        • Rallatos G.L.
        • Mavrikakis I.
        Scleral contact lenses for the management of complicated ptosis.
        Orbit. 2018; 37: 201-207
        • Scofield-Kaplan S.M.
        • Dunbar K.E.
        • Campbell A.A.
        • Kazim M.
        Utility of PROSE device in the management of complex oculoplastic pathology.
        Ophthalmic Plast Reconstr Surg. 2018; 34: 242-245
        • Shah-Desai S.D.
        • Aslam S.A.
        • Pullum K.
        • Beaconsfield M.
        • Rose G.E.
        Scleral contact lens usage in patients with complex blepharoptosis.
        Ophthal Plast Reconstr Surg. 2011; 27: 95-98
        • Fonn D.
        • Pritchard N.
        • Garnett B.
        • Davids L.
        Palpebral aperture sizes of rigid and soft contact lens wearers compared with nonwearers.
        Optom Vis Sci. 1996; 73: 211-214
        • Jupiter D.
        • Karesh J.
        Ptosis associated with PMMA/rigid gas permeable contact lens wear.
        CLAO J. 1999; 25: 159-162
        • van den Bosch W.A.
        • Lemij H.G.
        Blepharoptosis induced by prolonged hard contact lens wear.
        Ophthalmology. 1992; 99: 1759-1765
        • Verhoekx J.S.N.
        • Detiger S.E.
        • Muizebelt G.
        • Wubbels R.J.
        • Paridaens D.
        Soft contact lens induced blepharoptosis.
        Acta Ophthalmol (Copenh). 2019; 97: e141-2
        • Kocaoglu F.A.
        • Katircioglu Y.A.
        • Tok O.Y.
        • Pulat H.
        • Ornek F.
        The histopathology of involutional ectropion and entropion.
        Can J Ophthalmol. 2009; 44: 677-679
        • Ezra D.G.
        • Ellis J.S.
        • Gaughan C.
        • Beaconsfield M.
        • Collin R.
        • Bunce C.
        • et al.
        Changes in tarsal plate fibrillar collagens and elastic fibre phenotype in floppy eyelid syndrome.
        Clin Exp Ophthalmol. 2011; 39: 564-571
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Collins M.J.
        Morphological changes in the conjunctiva, episclera and sclera following short-term miniscleral contact lens wear in rigid lens neophytes.
        Cont Lens Anterior Eye. 2016; 39: 53-61
        • Vincent S.J.
        • Collins M.J.
        A topographical method to quantify scleral contact lens decentration.
        Cont Lens Anterior Eye. 2019; 42: 462-466
        • Kowalski L.P.
        • Collins M.J.
        • Vincent S.J.
        Scleral lens centration: the influence of centre thickness, scleral topography, and apical clearance.
        Cont Lens Anterior Eye. 2020; 43: 562-567
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        The temporal dynamics of miniscleral contact lenses: central corneal clearance and centration.
        Cont Lens Anterior Eye. 2018; 41: 162-168
        • Otchere H.
        • Jones L.W.
        • Sorbara L.
        Effect of time on scleral Lens settling and change in corneal clearance.
        Optom Vis Sci. 2017; 94: 908-913
        • Kauffman M.J.
        • Gilmartin C.A.
        • Bennett E.S.
        • Bassi C.J.
        A Comparison of the short-term settling of three scleral lens designs.
        Optom Vis Sci. 2014; 91: 1462-1466
        • Rajaei S.M.
        • Asadi F.
        • Rajabian M.R.
        • Ostadhassan H.
        • Crasta M.
        Effect of body position, eyelid manipulation, and manual jugular compression on intraocular pressure in clinically normal cats.
        Vet Ophthalmol. 2018; 21: 140-143
        • Lam S.M.
        • Tong L.
        • Yong S.S.
        • Li B.
        • Chaurasia S.S.
        • Shui G.
        • et al.
        Meibum lipid composition in Asians with dry eye disease.
        PLoS One. 2011; 6e24339
        • Barnett M.
        Foggy with no chance of moisture.
        Rev Cornea Contact Lenses. 2018; May/June: 16-19
        • Vigneswaran N.
        • Wilk C.M.
        • Heese A.
        • Hornstein O.P.
        • Naumann G.O.H.
        Immunohistochemical characterization of epithelial cells in human lacrimal glands - I. Normal major and accessory lacrimal glands.
        Graefes Arch Clin Exp Ophthalmol. 1990; 228: 58-64
        • Obata H.
        Anatomy and histopathology of the human lacrimal gland.
        Cornea. 2006; 25: S82-9
        • Zoukhri D.
        Effect of inflammation on lacrimal gland function.
        Exp Eye Res. 2006; 82: 885-898
        • Andrew N.H.
        • Selva D.
        • McNab A.A.
        The role of biopsy in lacrimal gland inflammation: a clinicopathologic study.
        Orbit (London). 2018; 37: 157
        • Jacobs D.S.
        • Rosenthal P.
        Boston scleral lens prosthetic device for treatment of severe dry eye in chronic graft-versus-host disease.
        Cornea. 2007; 26: 1195-1199
        • Oh D.J.
        • Michael R.
        • Setabutr P.
        • Shorter E.
        Scleral lens for severe dry eye status post lacrimal gland resection for adenoid cystic carcinoma.
        Am J Ophthalmol Case Reports. 2020; 17100601
        • Fawcett D.
        Eyelids and accessory organs of the eye.
        Chapman & Hall Medical, London1994
        • Ikeda M.
        Über die Ciliardrüsen der Säugetiere.
        Okijamas Folia Anat Jap. 1953; 25: 163-168
        • Stoeckelhuber M.
        • Stoeckelhuber B.M.
        • Welsch U.
        Human glands of Moll: histochemical and ultrastructural characterization of the glands of Moll in the human eyelid.
        J Invest Dermatol. 2003; 121: 28-36
        • Takahashi Y.
        • Watanabe A.
        • Matsuda H.
        • Nakamura Y.
        • Nakano T.
        • Asamoto K.
        • et al.
        Anatomy of secretory glands in the eyelid and conjunctiva: a photographic review.
        Ophthal Plast Reconstr Surg. 2013; 29: 215-219
        • Aumond S.
        • Bitton E.
        The eyelash follicle features and anomalies: a review.
        J Optom. 2018; 11: 211-222
        • Shumway C.L.
        • Motlagh M.
        • Wade M.
        Anatomy, head and neck, eye conjunctiva.
        StatPearls, Treasure Island (FL)2020
        • Knop E.
        • Knop N.
        • Zhivov A.
        • Kraak R.
        • Korb D.R.
        • Blackie C.
        • et al.
        The lid wiper and muco-cutaneous junction anatomy of the human eyelid margins: an in vivo confocal and histological study.
        J Anat. 2011; 218: 449-461
        • Knop E.
        • Korb D.R.
        • Blackie C.A.
        • Knop N.
        The lid margin is an underestimated structure for preservation of ocular surface health and development of dry eye disease.
        Dev Ophthalmol. 2010; 45: 108-122
        • Efron N.
        • Brennan N.A.
        • Morgan P.B.
        • Wilson T.
        Lid wiper epitheliopathy.
        Prog Retin Eye Res. 2016; 53: 140-174
        • Espana E.M.
        • Shah S.
        • Santhiago M.R.
        • Singh A.D.
        Graft versus host disease: clinical evaluation, diagnosis and management.
        Graefes Arch Clin Exp Ophthalmol. 2013; 251: 1257-1266
        • Kim S.K.
        Ocular graft vs. host disease.
        Ocul Surf. 2005; 3: S177-9
        • Iyer G.
        • Srinivasan B.
        • Agarwal S.
        • Kamala Muralidharan S.
        • Arumugam S.
        Comprehensive approach to ocular consequences of Stevens Johnson Syndrome - the aftermath of a systemic condition.
        Graefes Arch Clin Exp Ophthalmol. 2014; 252: 457-467
        • Fleming T.E.
        • Korman N.J.
        Cicatricial pemphigoid.
        J Am Acad Dermatol. 2000; 43: 571-574
        • Takahide K.
        • Parker P.M.
        • Wu M.
        • Hwang W.Y.
        • Carpenter P.A.
        • Moravec C.
        • et al.
        Use of fluid-ventilated, gas-permeable scleral lens for management of severe keratoconjunctivitis sicca secondary to chronic graft-versus-host disease.
        Biol Blood Marrow Transplant. 2007; 13: 1016-1021
        • Balasubramaniam S.C.
        • Raja H.
        • Nau C.B.
        • Shen J.F.
        • Schornack M.M.
        Ocular graft-versus-host disease: a review.
        Eye Contact Lens. 2015; 41: 256-261
        • Schornack M.M.
        • Baratz K.H.
        • Patel S.V.
        • Maguire L.J.
        Jupiter scleral lenses in the management of chronic graft versus host disease.
        Eye Contact Lens. 2008; 34: 302-305
        • Schornack M.M.
        • Baratz K.H.
        Ocular cicatricial pemphigoid: the role of scleral lenses in disease management.
        Cornea. 2009; 28: 1170-1172
        • Heur M.
        • Bach D.
        • Theophanous C.
        • Chiu G.B.
        Prosthetic replacement of the ocular surface ecosystem scleral lens therapy for patients with ocular symptoms of chronic Stevens-Johnson syndrome.
        Am J Ophthalmol. 2014; 158: 49-54
        • Donshik P.C.
        Giant papillary conjunctivitis.
        Trans Am Ophthalmol Soc. 1994; 92: 687-744
        • Srinivasan B.D.
        • Jakobiec F.A.
        • Iwamoto T.
        • DeVoe A.G.
        Giant papillary conjunctivitis with ocular prostheses.
        Arch Ophthalmol. 1979; 97: 892-895
        • Skrypuch O.W.
        • Willis N.R.
        Giant papillary conjunctivitis from an exposed prolene suture.
        Can J Ophthalmol. 1986; 21: 189-192
        • Dunn Jr., J.P.
        • Weissman B.A.
        • Mondino B.J.
        • Arnold A.C.
        Giant papillary conjunctivitis associated with elevated corneal deposits.
        Cornea. 1990; 9: 357-358
        • Schornack M.
        Adverse events associated with scleral lens wear: procedings of the international forum on scleral lens research.
        J Contact Lens Res Sci. 2018; 2: 13-17
        • Walker M.K.
        • Redfern R.
        • Lema C.
        Scleral lens wear: measuring inflammation in the fluid reservoir.
        Cont Lens Anterior Eye. 2020; 43: 577-584
        • Skidmore K.V.
        • Walker M.K.
        • Marsack J.D.
        • Bergmanson J.P.G.
        • Miller W.L.
        A measure of tear inflow in habitual scleral lens wearers with and without midday fogging.
        Cont Lens Anterior Eye. 2019; 42: 36-42
        • Paugh J.R.
        • Stapleton F.
        • Keay L.
        • Ho A.
        Tear exchange under hydrogel contact lenses: methodological considerations.
        Invest Ophthalmol Vis Sci. 2001; 42: 2813-2820
        • Tse V.
        • Tan B.
        • Kim Y.H.
        • Zhou Y.
        • Lin M.C.
        Tear dynamics under scleral lenses.
        Cont Lens Anterior Eye. 2019; 42: 43-48
        • Tan B.
        • Zhou Y.
        • Yuen T.L.
        • Lin K.
        • Michaud L.
        • Lin M.C.
        Effects of scleral-lens tear clearance on corneal edema and post-lens tear dynamics: a pilot study.
        Optom Vis Sci. 2018; 95: 481-490
        • Ko L.
        • Maurice D.
        • Ruben M.
        Fluid exchange under scleral contact lenses in relation to wearing time.
        Br J Ophthalmol. 1970; 54: 486-489
        • Serramito M.
        • Privado-Aroco A.
        • Batres L.
        • Carracedo G.G.
        Corneal surface wettability and tear film stability before and after scleral lens wear.
        Cont Lens Anterior Eye. 2019; 42: 520-525
        • Carracedo G.
        • Blanco M.S.
        • Martin-Gil A.
        • Zicheng W.
        • Alvarez J.C.
        • Pintor J.
        Short-term effect of scleral lens on the dry eye biomarkers in Keratoconus.
        Optom Vis Sci. 2015; 93: 150-157
        • Carracedo G.
        • Wang Z.
        • Serramito-Blanco M.
        • Martin-Gil A.
        • Carballo-Alvarez J.
        • Pintor J.
        Ocular surface temperature during scleral lens wearing in patients with keratoconus.
        Eye Contact Lens. 2016; 43: 346-351
        • Hill R.M.
        • Leighton A.J.
        Physiological time courses associated with contact lenses. Temperature. 1. Animal time courses with scleral lenses.
        Am J Optom Arch Am Acad Optom. 1963; 40: 427-438
        • Zhou L.
        • Zhao S.Z.
        • Koh S.K.
        • Chen L.
        • Vaz C.
        • Tanavde V.
        • et al.
        In-depth analysis of the human tear proteome.
        J Proteomics. 2012; 75: 3877-3885
        • Zhou L.
        • Beuerman R.W.
        • Chan C.M.
        • Zhao S.Z.
        • Li X.R.
        • Yang H.
        • et al.
        Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics.
        J Proteome Res. 2009; 8: 4889-4905
        • Wong T.T.
        • Zhou L.
        • Li J.
        • Tong L.
        • Zhao S.Z.
        • Li X.R.
        • et al.
        Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication.
        Invest Ophthalmol Vis Sci. 2011; 52: 7385-7391
        • Sack R.A.
        • Tan K.O.
        • Tan A.
        • Tan Kah Ooi
        • Tan A.
        Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid.
        Invest Ophthalmol Vis Sci. 1992; 33: 626-640
        • Markoulli M.
        • Papas E.
        • Cole N.
        • Holden B.A.
        The diurnal variation of matrix metalloproteinase-9 and its associated factors in human tears.
        Invest Ophthalmol Vis Sci. 2012; 53: 1479-1484
        • Sack R.A.
        • Beaton A.
        • Sathe S.
        • Morris C.
        • Willcox M.
        • Bogart B.
        Towards a closed eye model of the pre-ocular tear layer.
        Prog Retin Eye Res. 2000; 19: 649-668
        • Willcox M.D.P.
        • Morris C.A.
        • Thakur A.
        • Sack R.A.
        • Wickson J.
        • Boey W.
        • et al.
        Complement and complement regulatory proteins in human tears.
        Invest Ophthalmol Vis Sci. 1997; 38: 4-11
        • Bland H.C.
        • Moilanen J.A.
        • Ekholm F.S.
        • Paananen R.O.
        Investigating the role of specific tear film lipids connected to dry eye syndrome: a study on O-Acyl-omega-hydroxy fatty acids and diesters.
        Langmuir. 2019; 35: 3545-3552
        • Micera A.
        • Di Zazzo A.
        • Esposito G.
        • Longo R.
        • Foulsham W.
        • Sacco R.
        • et al.
        Age-related changes to human tear composition.
        Invest Ophthalmol Vis Sci. 2018; 59: 2024-2031
        • Priyadarsini S.
        • Hjortdal J.
        • Sarker-Nag A.
        • Sejersen H.
        • Asara J.M.
        • Karamichos D.
        Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease.
        PLoS One. 2014; 9: 1-7
        • Acera A.
        • Vecino E.
        • Rodríguez-Agirretxe I.
        • Aloria K.
        • Arizmendi J.M.
        • Morales C.
        • et al.
        Changes in tear protein profile in keratoconus disease.
        Eye. 2011; 25: 1225-1233
        • Shetty R.
        • Ghosh A.
        • Lim R.
        • Subramani M.
        • Mihir K.
        • Reshma A.R.
        • et al.
        Elevated expression of matrix metalloproteinase-9 and inflammatory cytokines in keratoconus patients is inhibited by cyclosporine A.
        Invest Ophthalmol Vis Sci. 2015; 56: 738-750
        • Lema I.
        • Duran J.A.
        Inflammatory molecules in the tears of patients with keratoconus.
        Ophthalmology. 2005; 112: 654-659
        • Jun A.S.
        • Cope L.
        • Speck C.
        • Feng X.
        • Lee S.
        • Meng H.
        • et al.
        Subnormal cytokine profile in the tear fluid of keratoconus patients.
        PLoS One. 2011; 6: e16437
        • Balasubramanian S.A.
        • Mohan S.
        • Pye D.C.
        • Willcox M.D.P.
        Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus.
        Acta Ophthalmol (Copenh). 2012; 90: 303-309
        • Aluru S.V.
        • Shweta A.
        • Bhaskar S.
        • Geetha K.
        • Sivakumar R.M.
        • Utpal T.
        • et al.
        Tear fluid protein changes in dry eye syndrome associated with rheumatoid arthritis: a proteomic approach.
        Ocul Surf. 2017; 15: 112-129
        • Willcox M.D.
        • Argüeso P.
        • Georgiev G.A.
        • Holopainen J.M.
        • Laurie G.W.
        • Millar T.J.
        • et al.
        TFOS DEWS II tear film report.
        Ocul Surf. 2017; 15: 366-403
        • Shinzawa M.
        • Dogru M.
        • Den S.
        • Ichijima T.
        • Higa K.
        • Kojima T.
        • et al.
        Epidermal fatty acid-binding protein: a novel marker in the diagnosis of dry eye disease in sjogren syndrome.
        Int J Mol Sci. 2018; 19
        • Kuo M.T.
        • Fang P.C.
        • Chao T.L.
        • Chen A.
        • Lai Y.H.
        • Huang Y.T.
        • et al.
        Tear proteomics approach to monitoring sjogren syndrome or dry eye disease.
        Int J Mol Sci. 2019; 20: 1932
        • Versura P.
        • Giannaccare G.
        • Vukatana G.
        • Mule R.
        • Malavolta N.
        • Campos E.C.
        Predictive role of tear protein expression in the early diagnosis of Sjogren’s syndrome.
        Ann Clin Biochem. 2018; 55: 561-570
        • Zhou L.
        • Huang L.Q.
        • Beuerman R.W.
        • Grigg M.E.
        • Li S.F.Y.
        • Chew F.T.
        • et al.
        Proteomic analysis of human tears: defensin expression after ocular surface surgery.
        J Proteome Res. 2004; 3: 410-416
        • Molloy M.P.
        • Bolis S.
        • Herbert B.R.
        • Ou K.
        • Tyler M.I.
        • van Dyk D.D.
        • et al.
        Establishment of the human reflex tear two-dimensional polyacrylamide gel electrophoresis reference map: new proteins of potential diagnostic value.
        Electrophoresis. 1997; 18: 2811-2815
        • Fluckinger M.
        • Haas H.
        • Merschak P.
        • Glasgow B.J.
        • Redl B.
        Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores.
        Antimicrob Agents Chemother. 2004; 48: 3367-3372
        • Carney F.P.
        • Morris C.A.
        • Willcox M.D.
        Effect of hydrogel lens wear on the major tear proteins during extended wear.
        Aust N Z J Ophthalmol. 1997; 25: S36-8
        • Glasson M.J.
        • Stapleton F.
        • Keay L.
        • Sweeney D.
        • Willcox M.D.P.
        Differences in clinical parameters and tear film of tolerant and intolerant contact Lens wearers.
        Invest Ophthalmol Vis Sci. 2003; 44: 5116-5124
        • Glasson M.J.
        • Stapleton F.
        • Keay L.
        • Willcox M.D.P.
        The effect of short term contact lens wear on the tear film and ocular surface characteristics of tolerant and intolerant wearers.
        Cont Lens Anterior Eye. 2006; 29: 41-47
        • Glasson M.J.
        • Stapleton F.
        • Willcox M.D.
        Lipid, lipase and lipocalin differences between tolerant and intolerant contact lens wearers.
        Curr Eye Res. 2002; 25: 227-235
        • Zhao H.
        • Li Q.
        • Ye M.
        • Yu J.
        Tear luminex analysis in dry eye patients.
        Med Sci Monit. 2018; 24: 7595-7602
        • Ionescu I.C.
        • Corbu C.G.
        • Tanase C.
        • Ionita G.
        • Nicula C.
        • Coviltir V.
        • et al.
        Overexpression of tear inflammatory cytokines as additional finding in keratoconus patients and their first degree family members.
        Mediators Inflamm. 2018; 2018: 1-9
        • Thakur A.
        • Willcox M.D.P.
        Contact lens wear alters the production of certain inflammatory mediators in tears.
        Exp Eye Res. 2000; 70: 255-259
        • Thakur A.
        • Willcox M.D.
        Chemotactic activity of tears and bacteria isolated during adverse responses.
        Exp Eye Res. 1998; 66: 129-137
        • González-Pérez J.
        • Villa-Collar C.
        • Moreiras T.S.
        • Gesto I.L.
        • González-Méijome J.M.
        • Rodríguez-Ares M.T.
        • et al.
        Tear film inflammatory mediators during continuous wear of contact lenses and corneal refractive therapy.
        Br J Ophthalmol. 2012; 96: 1092-1098
        • Lema I.
        • Sobrino T.
        • Durán Ja
        • Brea D.
        • Díez-Feijoo E.
        Subclinical keratoconus and inflammatory molecules from tears.
        Br J Ophthalmol. 2009; 93: 820-824
        • Narayanan S.
        • Corrales R.M.
        • Farley W.
        • McDermott A.M.
        • Pflugfelder S.C.
        Interleukin-1 receptor-1-deficient mice show attenuated production of ocular surface inflammatory cytokines in experimental dry eye.
        Cornea. 2008; 27: 811-817
        • Corrales R.M.
        • Stern M.E.
        • De Paiva C.S.
        • Welch J.
        • Li D.Q.
        • Pflugfelder S.C.
        Desiccating stress stimulates expression of matrix metalloproteinases by the corneal epithelium.
        Invest Ophthalmol Vis Sci. 2006; 47: 3293-3302
        • Chotikavanich S.
        • de Paiva C.S.
        • Li de Q.
        • Chen J.J.
        • Bian F.
        • Farley W.J.
        • et al.
        Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome.
        Invest Ophthalmol Vis Sci. 2009; 50: 3203-3209
        • Messmer E.M.
        • von Lindenfels V.
        • Garbe A.
        • Kampik A.
        Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay.
        Ophthalmology. 2016; 123: 2300-2308
        • Benitez-Del-Castillo J.
        • Cantu-Dibildox J.
        • Sanz-Gonzalez S.M.
        • Zanon-Moreno V.
        • Pinazo-Duran M.D.
        Cytokine expression in tears of patients with glaucoma or dry eye disease: a prospective, observational cohort study.
        Eur J Ophthalmol. 2019; 29: 437-443
        • Willcox M.D.P.
        Is there a role for inflammation in contact lens discomfort?.
        Eye Contact Lens. 2017; 43: 5-16
        • Thakur A.
        • Willcox M.D.
        Cytokine and lipid inflammatory mediator profile of human tears during contact lens associated inflammatory diseases.
        Exp Eye Res. 1998; 67: 9-19
        • Nichols J.J.
        • Green-Church K.B.
        Mass spectrometry-based proteomic analyses in contact lens-related dry eye.
        Cornea. 2009; 28: 1109-1117
        • Masoudi S.
        • Stapleton F.J.
        • Willcox M.D.P.
        Contact lens-induced discomfort and protein changes in tears.
        Optom Vis Sci. 2016; 93: 955-962
        • Gendler S.J.
        • Spicer A.P.
        Epithelial mucin genes.
        Annu Rev Physiol. 1995; 57: 607-634
        • Hollingsworth M.A.
        • Swanson B.J.
        Mucins in cancer: protection and control of the cell surface.
        Nat Rev Cancer. 2004; 4: 45-60
        • Moniaux N.
        • Escande F.
        • Porchet N.
        • Aubert J.P.
        • Batra S.K.
        Structural organization and classification of the human mucin genes.
        Front Biosci. 2001; 6: D1192-206
        • Gipson I.K.
        Distribution of mucins at the ocular surface.
        Exp Eye Res. 2004; 78: 379-388
        • Caroline P.
        • Andre M.
        Cloudy vision with sclerals.
        Contact Lens Spectr. 2012; 27: 56
        • Walker M.K.
        • Morrison S.
        • Caroline P.J.
        • Hua L.
        • Lampa M.
        • Kinoshita beth T.
        • et al.
        Laboratory analysis of scleral lens tear reservoir clouding.
        GSLS Poster Presentation, Las Vegas, NV2014
        • Chen L.
        • Zhou L.
        • Chan E.C.Y.
        • Neo J.
        • Beuerman R.W.
        Characterization of the human tear metabolome by LC-MS/MS.
        J Proteome Res. 2011; 10: 4876-4882
        • Zhou L.
        • Zhao S.Z.
        • Koh S.K.
        • Chen L.
        • Vaz C.
        • Tanavde V.
        • et al.
        In-depth analysis of the human tear proteome.
        J Proteomics. 2012; 75: 3877-3885
        • Winder A.F.
        • Ruben M.
        • Sheraidah G.A.
        Tear calcium levels and contact lens wear.
        Br J Ophthalmol. 1977; 61: 539-543
        • Peral A.
        • Carracedo G.
        • Acosta M.C.
        • Gallar J.
        • Pintor J.
        Increased levels of diadenosine polyphosphates in dry eye.
        Invest Ophthalmol Vis Sci. 2006; 47: 4053-4058
        • Postnikoff C.K.
        • Pucker A.D.
        • Laurent J.
        • Huisingh C.
        • McGwin G.
        • Nichols J.J.
        Identification of leukocytes associated with midday fogging in the post-lens tear film of scleral contact lens wearers.
        Invest Ophthalmol Vis Sci. 2019; 60: 226-233
        • Akkaya Turhan S.
        • Dizdar Yigit D.
        • Toker E.
        Impact of changes in the optical density of postlens fluid on the clinical performance of miniscleral lenses.
        Eye Contact Lens. 2020; 46: 353-358
        • Schornack M.M.
        • Nau C.B.
        Changes in optical density of postlens fluid reservoir during 2 hours of scleral lens wear.
        Eye Contact Lens. 2018; 44: S344-9
        • Carracedo G.
        • Serramito-Blanco M.
        • Martin-Gil A.
        • Wang Z.
        • Rodriguez-Pomar C.
        • Pintor J.
        Post-lens tear turbidity and visual quality after scleral lens wear.
        Clin Exp Optom. 2017; 100: 577-582
        • Michaud L.
        • van der Worp E.
        • Brazeau D.
        • Warde R.
        • Giasson C.J.
        Predicting estimates of oxygen transmissibility for scleral lenses.
        Cont Lens Anterior Eye. 2012; 35: 266-271
        • Tan B.
        • Tse V.
        • Kim Y.H.
        • Lin K.
        • Zhou Y.
        • Lin M.C.
        Effects of scleral-lens oxygen transmissibility on corneal thickness: a pilot study.
        Cont Lens Anterior Eye. 2019; 42: 366-372
        • Fisher D.
        • Collins M.J.
        • Vincent S.J.
        Fluid reservoir thickness and corneal edema during open-eye scleral lens wear.
        Optom Vis Sci. 2020; 97: 683-689
        • Rathi V.M.
        • Mandathara P.S.
        • Dumpati S.
        • Sangwan V.S.
        Change in vault during scleral lens trials assessed with anterior segment optical coherence tomography.
        Cont Lens Anterior Eye. 2017; 40: 157-161
        • Sonsino J.
        • Mathe D.S.
        Central vault in dry eye patients successfully wearing scleral lens.
        Optom Vis Sci. 2013; 90: e248-51
        • Nau C.B.
        • Schornack M.M.
        Region-specific changes in postlens fluid reservoir depth beneath small-diameter scleral lenses over 2 hours.
        Eye Contact Lens. 2018; 44: S210-S215
        • Severinsky B.
        • Behrman S.
        • Frucht-Pery J.
        • Solomon A.
        Scleral contact lenses for visual rehabilitation after penetrating keratoplasty: long-term outcomes.
        Cont Lens Anterior Eye. 2014; 37: 196-202
        • Zimmerman A.B.
        • Marks A.
        Microbial keratitis secondary to unintended poor compliance with scleral gas-permeable contact lenses.
        Eye Contact Lens. 2014; 40: e1-4
        • Walker M.K.
        • Bergmanson J.P.
        • Miller W.L.
        • Marsack J.D.
        • Johnson L.A.
        Complications and fitting challenges associated with scleral contact lenses: a review.
        Cont Lens Anterior Eye. 2016; 39: 88-96
        • Bachman W.G.
        • Wilson G.
        Essential ions for maintenance of the corneal epithelial surface.
        Invest Ophthalmol Vis Sci. 1985; 26: 1484-1488
        • Fogt J.S.
        • Karres M.
        • Barr J.T.
        Changes in symptoms of midday fogging with a novel scleral contact lens filling solution.
        Optom Vis Sci. 2020; 97: 690-696
        • Harthan J.
        • Nau C.B.
        • Barr J.
        • Nau A.
        • Shorter E.
        • Chimato N.T.
        • et al.
        Scleral lens prescription and management practices: the SCOPE study.
        Eye Contact Lens. 2018; 44: S228-32
        • McKinney A.
        • Miller W.
        • Leach N.
        • Polizzi C.
        • van der Worp E.
        • Bergmanson J.
        The cause of midday visual fogging in scleral gas permeable lens wearers.
        Invest Ophthalmol Vis Sci. 2013; 54 (ARVO E-Abstract 5483)
        • Schornack M.M.
        • Fogt J.
        • Harthan J.
        • Nau C.B.
        • Nau A.
        • Cao D.
        • et al.
        Factors associated with patient-reported midday fogging in established scleral lens wearers.
        Cont Lens Anterior Eye. 2020; 43: 602-608
        • Otten H.M.
        • Van Der Linden B.
        • Visser E.S.
        Clinical performance of a new bitangential mini-scleral lens.
        Optom Vis Sci. 2018; 95: 515-522
        • Visser E.S.
        • Van der Linden B.J.
        • Otten H.M.
        • Van der Lelij A.
        • Visser R.
        Medical applications and outcomes of bitangential scleral lenses.
        Optom Vis Sci. 2013; 90: 1078-1085
        • Smesler G.
        Relation of factors involved in maintenance of optical properties of cornea to contact lens wear.
        Arch Ophthalmol. 1952; 47: 328-343
        • Ko L.
        • Maurice D.
        • Ruben M.
        Fluid exchange under scleral contact lenses in relation to wearing time.
        Br J Ophthalmol. 1970; 54: 486-489
        • Paugh J.R.
        • Chen E.
        • Heinrich C.
        • Miller H.
        • Gates T.
        • Nguyen A.L.
        • et al.
        Silicone hydrogel and rigid gas-permeable scleral lens tear exchange.
        Eye Contact Lens. 2018; 44: 97-101
        • Smelser G.K.
        • Ozanics V.
        Importance of atmospheric oxygen for maintaining the optical properties of the human cornea.
        Arch Ophthalmol. 1952; 115: 140-141
        • Laballe R.
        • Vigne J.
        • Denion E.
        • Lemaitre F.
        • Goux D.
        • Pisella P.J.
        Preclinical assessment of scleral lens as a reservoir-based ocular therapeutic system.
        Cont Lens Anterior Eye. 2016; 39: 394-396
        • Ciralsky J.B.
        • Chapman K.O.
        • Rosenblatt M.I.
        • Sood P.
        • Fernandez A.G.
        • Lee M.N.
        • et al.
        Treatment of refractory persistent corneal epithelial defects: a standardized approach using continuous wear PROSE therapy.
        Ocul Immunol Inflamm. 2015; 23: 219-224
        • Lim M.
        • Jacobs D.S.
        • Rosenthal P.
        • Carrasquillo K.G.
        The Boston Ocular Surface Prosthesis as a novel drug delivery system for bevacizumab.
        Semin Ophthalmol. 2009; 24: 149-155
        • Yin J.
        • Jacobs D.S.
        Long-term outcome of using Prosthetic Replacement of Ocular Surface Ecosystem (PROSE) as a drug delivery system for bevacizumab in the treatment of corneal neovascularization.
        Ocul Surf. 2019; 17: 134-141
        • Polania-Baron E.J.
        • Santana-Cruz O.
        • Lichtinger A.
        • Graue-Hernandez E.O.
        • Navas A.
        Treatment of severe infectious keratitis with scleral contact lenses as a reservoir of moxifloxacin 0.5%.
        Cornea. 2020; (Online ahead of print)
        • Dutot M.
        • Warnet J.M.
        • Baudouin C.
        • Rat P.
        Cytotoxicity of contact lens multipurpose solutions: role of oxidative stress, mitochondrial activity and P2X7 cell death receptor activation.
        Eur J Pharm Sci. 2008; 33: 138-145
        • Robertson D.M.
        • Petroll W.M.
        • Jester J.V.
        • Cavanagh H.D.
        The role of contact lens type, oxygen transmission, and care-related solutions in mediating epithelial homeostasis and Pseudomonas binding to corneal cells: an overview.
        Eye Contact Lens. 2007; 33: 394-398
        • Young G.
        • Keir N.
        • Hunt C.
        • Woods C.A.
        Clinical evaluation of long-term users of two contact lens care preservative systems.
        Eye Contact Lens. 2009; 35: 50-58
        • Brennan N.A.
        • Chantal Coles M.L.
        Extended wear in perspective.
        Optom Vis Sci. 1997; 74: 609-623
        • Lin M.C.
        • Polse K.A.
        Hypoxia, overnight wear, and tear stagnation effects on the corneal epithelium: data and proposed model.
        Eye Contact Lens. 2007; 33: 378-381
        • Bonanno J.A.
        • Polse K.A.
        Corneal acidosis during contact lens wear: effects of hypoxia and CO2.
        Invest Ophthalmol Vis Sci. 1987; 28: 1514-1520
        • Bonanno J.
        Contact lens induced corneal acidosis.
        CLAO. 1996; 22: 70-74
        • Prydal J.I.
        • Campbell F.W.
        Study of precorneal tear film thickness and structure by interferometry and confocal microscopy.
        Invest Ophthalmol Vis Sci. 1992; 33: 1996-2005
        • Werkmeister R.M.
        • Alex A.
        • Kaya S.
        • Unterhuber A.
        • Hofer B.
        • Riedl J.
        • et al.
        Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2013; 54: 5578-5583
        • Chen Q.
        • Wang J.
        • Tao A.
        • Shen M.
        • Jiao S.
        • Lu F.
        Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses.
        Invest Ophthalmol Vis Sci. 2010; 51: 1988-1993
        • Prydal J.I.
        • Artal P.
        • Woon H.
        • Campbell F.W.
        Study of human precorneal tear film thickness and structure using laser interferometry.
        Invest Ophthalmol Vis Sci. 1992; 33: 2006-2011
        • Zhuang H.
        • Zhou X.
        • Xu J.
        A novel method for pachymetry mapping of human precorneal tear film using Pentacam with fluorescein.
        Invest Ophthalmol Vis Sci. 2010; 51: 156-159
        • King-Smith P.E.
        • Fink B.A.
        • Fogt N.
        • Nichols K.K.
        • Hill R.M.
        • Wilson G.S.
        The thickness of the human precorneal tear film: evidence from reflection spectra.
        Invest Ophthalmol Vis Sci. 2000; 41: 3348-3359
        • Savini G.
        • Barboni P.
        • Zanini M.
        Tear meniscus evaluation by optical coherence tomography.
        Ophthalmic Surg Lasers Imaging. 2006; 37: 112-118
        • Napoli P.E.
        • Coronella F.
        • Satta G.M.
        • Fossarello M.
        A novel technique of contrast-enhanced optical coherence tomography imaging in evaluation of clearance of lipids in human tears.
        PLoS One. 2014; 9e109843
        • Shen M.
        • Li J.
        • Wang J.
        • Ma H.
        • Cai C.
        • Tao A.
        • et al.
        Upper and lower tear menisci in the diagnosis of dry eye.
        Invest Ophthalmol Vis Sci. 2009; 50: 2722-2726
        • Purslow C.
        • Wolffsohn J.S.
        Ocular surface temperature: a review.
        Eye Contact Lens. 2005; 31: 117-123
        • Lafosse E.
        • Romin D.M.
        • Esteve-Taboada J.-J.
        • Wolffsohn J.S.
        • Talens-Estarelles C.
        • Garcia-Lazaro S.
        Comparison of the influence of corneo-scleral and scleral lenses on ocular surface and tear film metrics in a presbyopic population.
        Cont Lens Anterior Eye. 2018; 41: 122-127
        • Del Aguila-Carrasco A.J.
        • Ferrer-Blasco T.
        • Garcia-Lazaro S.
        • Esteve-Taboada J.J.
        • Montes-Mico R.
        Assessment of corneal thickness and tear meniscus during contact-lens wear.
        Cont Lens Anterior Eye. 2015; 38: 185-193
        • Craig J.P.
        • Willcox M.D.P.
        • Argüeso P.
        • Maissa C.
        • Stahl U.
        • Tomlinson A.
        • et al.
        The TFOS International Workshop on Contact Lens discomfort: report of the contact lens interactions with the tear film subcommittee.
        Investig Ophthalmol Vis Sci. 2013; 54: TFOS123-156
        • Carracedo G.
        • Wang Z.
        • Serramito-Blanco M.
        • Martin-Gil A.
        • Carballo-Alvarez J.
        • Pintor J.
        Ocular surface temperature during scleral lens wearing in patients with keratoconus.
        Eye Contact Lens. 2017; 43: 346-351
        • Williams T.
        • Willcox M.
        • Schneider R.
        Interactions of bacteria with contact lenses: the effect of soluble protein and carbohydrate on bacterial adhesion to contact lenses.
        Optom Vis Sci. 1998; 75: 266-271
        • Willcox M.D.P.
        Tear film, contact lenses and tear biomarkers.
        Clin Exp Optom. 2019; 102: 350-363
        • Cho P.
        • Poon H.Y.
        • Chen C.C.
        • Yuon L.T.
        To rub or not to rub? – effective rigid contact lens cleaning.
        Ophthalmic Physiol Opt. 2020; 40: 17-23
        • Bontempo A.R.
        • Rapp J.
        Protein-lipid interaction on the surface of a rigid gas-permeable contact lens in vitro.
        Curr Eye Res. 1997; 16: 1258-1262