In-vitro dewetting properties of planned replacement and daily disposable silicone hydrogel contact lenses

Published:October 25, 2020DOI:https://doi.org/10.1016/j.clae.2020.10.007

      Abstract

      Aim

      To compare the in-vitro videokeratoscopic surface dewetting properties of new-generation silicone hydrogel (SiH) planned replacement contact lenses (CL) with those of daily disposable CLs.

      Method

      A chrome coated cornea model was used for the in-vitro evaluation of surface dewetting. Pre-lens and post-lens film layers were formed by instilling a normal preservative-free normal saline solution (PFNs) (0.9 %) before and after the placement of the CL on the model cornea. The tests were carried out on fanfilcon A, lotrafilcon B, samfilcon A, and senofilcon A lenses, as well as such daily disposable lenses as delefilcon, nesofilcon A and senofilcon one day. Using videokeratoscopic methods, images were obtained at 30-second intervals up to 180 s in the lens and control groups and were analyzed by the ImajeJ® program.

      Results

      The mean measured area of the keratoscopic rings was largest in the fanfilcon group (67.56 mm2), followed by 61.53 mm2 in the lotrafilcon A group and 64.60 mm2 in the samfilcon group, while the smallest area was measured in the senofilcon A group, at 56.90 mm2. The area was measured as 64.33, 63.09 and 68.39 mm2 for the delefilcon, nesofilcon and Senofilcon one day CLs, respectively. The dewetting patterns and properties differed in the CL groups (p < 0.05), while no significant differences were found between the measured areas of the planned replacement and daily disposable CL groups (p > 0.05).

      Discussion

      Videokeratoscopy using in-vitro cornea models has been identified as a reproducible and reliable method for the analysis of the surface dewetting of CLs. The dewetting characteristics of CL groups have been found to differ from each other, despite all being produced from SiH materials. The surface wetting coating has been shown to affect CL dewetting performance.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Tighe B.J.
        A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility.
        Eye Contact Lens. 2013; 39: 4-12
        • Lin M.C.
        • Svitova T.F.
        Contact lenses wettability in vitro: effect of surface-active ingredients.
        Optometry Vision Sci. 2010; 87: 440
        • Deng X.
        • Korogiannaki M.
        • Rastegari B.
        • Zhang J.
        • Chen M.
        • Fu Q.
        • et al.
        “Click” chemistry-tethered hyaluronic acid-based contact lens coatings improve lens wettability and lower protein adsorption.
        ACS Appl Mater Interfaces. 2016; 8: 22064-22073
        • Bhamla M.S.
        • Nash W.L.
        • Elliott S.
        • Fuller G.G.
        Influence of lipid coatings on surface wettability characteristics of silicone hydrogels.
        Langmuir. 2015; 31: 3820-3828
        • Bhamla M.S.
        • Chai C.
        • Rabiah N.I.
        • Frostad J.M.
        • Fuller G.G.
        Instability and breakup of model tear films.
        Invest Ophthalmol Vis Sci. 2016; 57: 949-958
        • Guillon M.
        • Patel T.
        • Patel K.
        • Gupta R.
        • Maissa C.A.
        Quantification of contact lens wettability after prolonged visual device use under low humidity conditions.
        Contact Lens Anterior Eye. 2019; 42: 386-391
        • Havuz E.
        • Gurkaynak M.N.
        Videokeratoscopic assessment of silicone hydrogel contact lens wettability using a new in-vitro method.
        Contact Lens Anterior Eye. 2019; 42: 614-619
        • Keir N.
        • Jones L.
        Wettability and silicone hydrogel lenses: a review.
        Eye Contact Lens. 2013; 39: 100-108
        • Lin C.H.
        • Cho H.L.
        • Yeh Y.H.
        • Yang M.C.
        Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique.
        Colloids Surf B Biointerfaces. 2015; 136: 735-743
        • Cheng L.
        • Muller S.J.
        • Radke C.J.
        Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
        Curr Eye Res. 2004; 28: 93-108
        • Lau J.K.
        • So H.T.
        • Chiang T.K.
        • Cho P.
        Effect of multipurpose solutions on in vivo surface wettability of a silicone hydrogel lens.
        Contact Lens Anterior Eye. 2016; 39: 461-465
        • Fagehi R.
        • Pearce E.I.
        • Oliver K.
        • Abusharha A.A.
        • Tomlinson A.
        Care solution effects on contact lens in vivo wettability.
        Clin Exp Optom. 2017; 100: 623-632
        • Lira M.
        • Silva R.
        Effect of Lens care systems on silicone hydrogel contact lens hydrophobicity.
        Eye Contact Lens. 2017; 43: 89-94
        • Silva D.
        • Fernandes A.C.
        • Nunes T.G.
        • Colaco R.
        • Serro A.P.
        The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses.
        Acta Biomater. 2015; 26: 184-194
        • Lorentz H.
        • Rogers R.
        • Jones L.
        The impact of lipid on contact angle wettability.
        Optometry and vision science. 2007; 84: 946-953
        • Panaser A.
        • Tighe B.J.
        Function of lipids − their fate in contact lens wear: an interpretive review.
        Contact Lens Anterior Eye. 2012; 35: 100-111
        • Rabiah N.I.
        • Scales C.W.
        • Fuller G.G.
        The influence of protein deposition on contact lens tear film stability.
        Colloids Surf B Biointerfaces. 2019; 180: 229-236
        • Gennes P.-G.
        • Brochard-Wyart F.
        • Quéré D.
        Dewetting, Capillarity and wetting phenomena.
        Springer, 2004: 153-190
        • Bhamla M.S.
        • Giacomin C.E.
        • Balemans C.
        • Fuller G.G.
        Influence of interfacial rheology on drainage from curved surfaces.
        Soft Matter. 2014; 10: 6917-6925
        • Bhamla M.S.
        • Balemans C.
        • Fuller G.G.
        Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates.
        J Colloid Interface Sci. 2015; 449: 428-435
        • Meadows D.
        • Ketelson H.
        • McQueen N.
        • Stone R.
        Dynamic wetting behavior of pHEMA–MAA and silicone hydrogel contact lenses.
        Invest Ophthalmol Vis Sci. 2004; 45: 1553
        • Kheshgi H.S.
        • Scriven L.
        Dewetting: Nucleation and growth of dry regions.
        Chem Eng Sci. 1991; 46: 519-526
        • Green J.A.
        • Phillips K.S.
        • Hitchins V.M.
        • Lucas A.D.
        • Shoff M.E.
        • Hutter J.C.
        • et al.
        Material properties that predict preservative uptake for silicone hydrogel contact lenses.
        Eye Contact Lens. 2012; 38: 350-357
        • Rex J.
        • Knowles T.
        • Zhao X.
        • Lemp J.
        • Maissa C.
        • Perry S.S.
        Elemental composition at silicone hydrogel contact lens surfaces.
        Eye Contact Lens. 2018; 44: S221-S226
        • Carbone G.
        • Persson B.
        Dewetting at soft viscoelastic interfaces.
        J Chem Phys. 2004; 121: 2246-2252
        • Marx S.
        • Sickenberger W.
        A novel in-vitro method for assessing contact lens surface dewetting: non-invasive keratograph dry-up time (NIK-DUT).
        Contact Lens Anterior Eye. 2017; 40: 382-388
        • Bhamla S.
        • Elkins C.
        • Bergsman D.
        • Fuller G.
        Effect of protein adsorption on dewetting and corneal cell adhesion on contact lenses.
        Invest Ophthalmol Vis Sci. 2013; 54: 488
        • Kolbe O.
        • Zimmermann F.
        • Marx S.
        • Sickenberger W.
        Introducing a novel in vivo method to access visual performance during dewetting process of contact lens surface.
        Contact Lens Anterior Eye. 2020; (Available online 5 March 2020)
        • Jones L.
        • May C.
        • Nazar L.
        • Simpson T.
        In vitro evaluation of the dehydration characteristics of silicone hydrogel and conventional hydrogel contact lens materials.
        Contact Lens Anterior Eye. 2002; 25: 147-156
        • Schafer J.
        • Reindel W.
        • Steffen R.
        • Mosehauer G.
        • Chinn J.
        Use of a novel extended blink test to evaluate the performance of two polyvinylpyrrolidone-containing, silicone hydrogel contact lenses.
        Clin Ophthalmol (Auckl, NZ). 2018; 12: 819
        • Wolffsohn J.S.
        • Mroczkowska S.
        • Hunt O.A.
        • Bilkhu P.
        • Drew T.
        • Sheppard A.
        Crossover evaluation of silicone hydrogel daily disposable contact lenses.
        Optom Vis Sci. 2015; 92: 1063-1068
        • Schafer J.
        • Steffen R.
        • Reindel W.
        • Chinn J.
        Evaluation of surface water characteristics of novel daily disposable contact lens materials, using refractive index shifts after wear.
        Clin Ophthalmol (Auckl, NZ). 2015; 9: 1973
        • Ketelson H.A.
        • Meadows D.L.
        • Stone R.P.
        Dynamic wettability properties of a soft contact lens hydrogel.
        Colloids Surf B Biointerfaces. 2005; 40: 1-9
        • FDA
        FDA 510(k) summary K113703. Bausch + Lomb nesofilcon a contact lens. June 5.
        2012
        • Lessel M.
        • McGraw J.D.
        • Bäumchen O.
        • Jacobs K.
        Nucleated dewetting in supported ultra-thin liquid films with hydrodynamic slip.
        Soft Matter. 2017; 13: 4756-4760
        • Danielson D.T.
        • Sparacin D.K.
        • Michel J.
        • Kimerling L.C.
        Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration.
        J Appl Phys. 2006; 100: 083507
        • Vidal-Rohr M.
        • Wolffsohn J.S.
        • Davies L.N.
        • Cerviño A.
        Effect of contact lens surface properties on comfort, tear stability and ocular physiology.
        Contact Lens Anterior Eye. 2018; 41: 117-121
        • Fagehi R.
        • Tomlinson A.
        • Manahilov V.
        • Haddad M.
        Contact lens in vitro wettability by interferometry measures of drying dynamics.
        Eye Contact Lens. 2013; 39: 365-375
        • Kolbe O.
        • Zimmermann F.
        • Marx S.
        • Sickenberger W.
        Introducing a novel in vivo method to access visual performance during dewetting process of contact lens surface.
        Contact Lens Anterior Eye. 2020;