Short-term effects of atropine combined with orthokeratology (ACO) on choroidal thickness

      Abstract

      Purpose

      To analyse the one-month change in subfoveal choroidal thickness (SFChT) of myopic children treated with 0.01 % atropine, orthokeratology (OK), or their combination.

      Methods

      This is a prospective, randomized controlled trial. One hundred fifty-four children aged between 8 and 12 years with a spherical equivalent (SE) of -1.00 to -6.00 diopters were enrolled. Subjects were randomly assigned to receive 0.01 % atropine and orthokeratology (ACO, n = 39), 0.01 % atropine and single vision glasses (atropine, n = 42), orthokeratology and placebo (OK, n = 36), or placebo and single vision glasses (control, n = 37). SFChT was assessed using optical coherence tomography (OCT). Ocular parameters, including axial length (AL), were measured using a Lenstar LS 900.

      Results

      SFChT significantly increased in the ACO (14.12 ± 12.88 μm, p < 0.001), OK (9.43 ± 9.14 μm, p < 0.001) and atropine (5.49 ± 9.38 μm, p < 0.001) groups, while it significantly decreased in the control group (-4.81 ± 9.93 μm, p = 0.006). The one-month change in SFChT was significantly different between the control and treatment groups (p < 0.001). The results of pairwise comparisons among the treatment groups showed that the magnitude of the SFChT change was larger in the ACO group than in the atropine group (p = 0.002). The changes in the ACO and OK groups were not significantly different (p = 0.326).

      Conclusion

      The combination of OK and atropine induced a greater increase in SFChT than monotherapy with atropine, which might indicate a better treatment effect for childhood myopia control.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Guo K.
        • Yang D.Y.
        • Wang Y.
        • Yang X.R.
        • Jing X.X.
        • Guo Y.Y.
        • et al.
        Prevalence of myopia in schoolchildren in Ejina: the gobi desert children eye study.
        Invest Ophthalmol Vis Sci. 2015; 56: 1769-1774
        • Fan D.S.P.
        • Lam D.S.C.
        • Lam R.F.
        • Lau J.T.F.
        • Chong K.S.
        • Cheung E.Y.Y.
        • et al.
        Prevalence, incidence, and progression of myopia of school children in Hong Kong.
        Invest Ophthalmol Vis Sci. 2004; 45: 1071-1075
        • Rudnicka A.R.
        • Kapetanakis V.V.
        • Wathern A.K.
        • Logan N.S.
        • Gilmartin B.
        • Whincup P.H.
        • et al.
        Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention.
        Br J Ophthalmol. 2016; 100: 882-890
        • Holden B.A.
        • Fricke T.R.
        • Wilson D.A.
        • Jong M.
        • Naidoo K.S.
        • Sankaridurg P.
        • et al.
        Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050.
        Ophthalmology. 2016; 123: 1036-1042
        • Morgan I.G.
        • Ohno-Matsui K.
        • Saw S.-M.
        Myopia.
        Lancet. 2012; 379: 1739-1748
        • Iwase A.
        • Araie M.
        • Tomidokoro A.
        • Yamamoto T.
        • Shimizu H.
        • Kitazawa Y.
        Prevalence and causes of low vision and blindness in a Japanese adult population.
        Ophthalmology. 2006; 113: 1354-1362
        • Wong T.Y.
        • Ferreira A.
        • Hughes R.
        • Carter G.
        • Mitchell P.
        Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review.
        Am J Ophthalmol. 2014; 157: 9-25
        • Flitcroft D.I.
        The complex interactions of retinal, optical and environmental factors in myopia aetiology.
        Prog Retin Eye Res. 2012; 31: 622-660
        • Wildsoet C.
        • Wallman J.
        Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks.
        Vision Res. 1995; 35: 1175-1194
        • Troilo D.
        • Nickla D.L.
        • Wildsoet C.F.
        Choroidal thickness changes during altered eye growth and refractive state in a primate.
        Invest Ophthalmol Vis Sci. 2000; 41: 1249-1258
        • Nickla D.L.
        • Wallman J.
        The multifunctional choroid.
        Prog Retin Eye Res. 2010; 29: 144-168
        • Hung L.F.
        • Wallman J.
        • Smith E.L.
        Vision-dependent changes in the choroidal thickness of macaque monkeys.
        Invest Ophthalmol Vis Sci. 2000; 41: 1259-1269
        • Read S.A.
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Collins M.J.
        Longitudinal changes in choroidal thickness and eye growth in childhood.
        Invest Ophthalmol Vis Sci. 2015; 56: 3103-3112
        • Chiang S.T.-H.
        • Phillips J.R.
        Effect of atropine eye drops on choroidal thinning induced by hyperopic retinal defocus.
        J Ophthalmol. 2018; 2018: 1-6
        • Chakraborty R.
        • Read S.A.
        • Collins M.J.
        Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics.
        Invest Ophthalmol Vis Sci. 2011; 52: 5121-5129
        • Chakraborty R.
        • Read S.A.
        • Collins M.J.
        Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes.
        Exp Eye Res. 2012; 103: 47-54
        • Read S.A.
        • Collins M.J.
        • Sander B.P.
        Human optical axial length and defocus.
        Invest Ophthalmol Vis Sci. 2010; 51: 6262-6269
        • Summers J.A.
        The choroid as a sclera growth regulator.
        Exp Eye Res. 2013; 114: 120-127
        • Swarbrick H.A.
        • Alharbi A.
        • Watt K.
        • Lum E.
        • Kang P.
        Myopia control during orthokeratology lens wear in children using a novel study design.
        Ophthalmology. 2015; 122: 620-630
        • Santodomingo-Rubido J.
        • Villa-Collar C.
        • Gilmartin B.
        • Gutiérrez-Ortega R.
        Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes.
        Invest Ophthalmol Vis Sci. 2012; 53: 5060-5065
        • Santodomingo-Rubido J.
        • Villa-Collar C.
        • Gilmartin B.
        • Gutiérrez-Ortega R.
        • Sugimoto K.
        Long-term efficacy of orthokeratology contact lens wear in controlling the progression of childhood myopia.
        Curr Eye Res. 2017; 42: 713-720
        • Cho P.
        • Cheung S.-W.
        Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial.
        Invest Ophthalmol Vis Sci. 2012; 53: 7077-7085
        • Chen C.
        • Cheung S.W.
        • Cho P.
        Myopia control using toric orthokeratology (TO-SEE study).
        Invest Opthalmol Vis Sci. 2013; 54: 6510-6517
        • Hiraoka T.
        • Kakita T.
        • Okamoto F.
        • Takahashi H.
        • Oshika T.
        Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study.
        Invest Opthalmol Vis Sci. 2012; 53: 3913-3919
        • Chen Z.
        • Xue F.
        • Zhou J.
        • Qu X.
        • Zhou X.
        Effects of orthokeratology on choroidal thickness and axial length.
        Optom Vis Sci. 2016; 93: 1064-1071
        • Li Z.
        • Cui D.
        • Hu Y.
        • Ao S.
        • Zeng J.
        • Yang X.
        Choroidal thickness and axial length changes in myopic children treated with orthokeratology.
        Cont Lens Anterior Eye. 2017; 40: 417-423
        • Li Z.
        • Hu Y.
        • Cui D.
        • Long W.
        • He M.
        • Yang X.
        Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
        Acta Ophthalmol. 2019; 97: e454-e459
        • Huang J.
        • Wen D.
        • Wang Q.
        • McAlinden C.
        • Flitcroft I.
        • Chen H.
        • et al.
        Efficacy comparison of 16 interventions for myopia control in children.
        Ophthalmology. 2016; 123: 697-708
        • Pineles S.L.
        • Kraker R.T.
        • VanderVeen D.K.
        • Hutchinson A.K.
        • Galvin J.A.
        • Wilson L.B.
        • et al.
        Atropine for the prevention of myopia progression in children.
        Ophthalmology. 2017; 124: 1857-1866
        • Wildsoet C.F.
        • Chia A.
        • Cho P.
        • Guggenheim J.A.
        • Polling J.R.
        • Read S.
        • et al.
        IMI – interventions for controlling myopia onset and progression report.
        Invest Ophthalmol Vis Sci. 2019; 60: M106-M131
        • Chia A.
        • Chua W.-H.
        • Cheung Y.-B.
        • Wong W.-L.
        • Lingham A.
        • Fong A.
        • et al.
        Atropine for the treatment of childhood Myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of Myopia 2).
        Ophthalmology. 2012; 119: 347-354
        • Chia A.
        • Lu Q.-S.
        • Tan D.
        Five-year clinical trial on atropine for the treatment of myopia 2.
        Ophthalmology. 2016; 123: 391-399
        • Carr B.J.
        • Stell W.K.
        The science behind myopia.
        in: Kolb H. Fernandez E. Nelson R. The organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City (UT)2017: 53
        • Nickla D.L.
        • Jordan K.
        Effects of time-of-day on inhibition of lens-induced myopia by quinpirole, pirenzepine and atropine in chicks.
        Exp Eye Res. 2019; 181: 5-14
        • Zhang Z.
        • Zhou Y.
        • Xie Z.
        • Chen T.
        • Gu Y.
        • Lu S.
        • et al.
        The effect of topical atropine on the choroidal thickness of healthy children.
        Sci Rep. 2016; 6: 34936
        • Sander B.P.
        • Collins M.J.
        • Read S.A.
        Short-term effect of low-dose atropine and hyperopic defocus on choroidal thickness and axial length in young myopic adults.
        J Ophthalmol. 2019; 2019: 1-8
        • Li Z.
        • Zeng J.
        • Jin W.
        • Long W.
        • Lan W.
        • Yang X.
        Time-course of changes in choroidal thickness after complete mydriasis induced by compound tropicamide in children.
        PLoS One. 2016; 11e0162468
        • Ding X.
        • Li J.
        • Zeng J.
        • Ma W.
        • Liu R.
        • Li T.
        • et al.
        Choroidal thickness in healthy chinese subjects.
        Invest Ophthalmol Vis Sci. 2011; 52: 9555
        • Kang P.
        • Swarbrick H.
        Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses.
        Optom Vis Sci. 2011; 88: 476-482
        • Hu Y.
        • Wen C.
        • Li Z.
        • Zhao W.
        • Ding X.
        • Yang X.
        Areal summed corneal power shift is an important determinant for axial length elongation in myopic children treated with overnight orthokeratology.
        Br J Ophthalmol. 2019; 103: 1571-1575
        • Chen Z.
        • Niu L.
        • Xue F.
        • Qu X.
        • Zhou Z.
        • Zhou X.
        • et al.
        Impact of pupil diameter on axial growth in orthokeratology.
        Optom Vis Sci. 2012; 89: 1636-1640
        • Kinoshita N.
        • Konno Y.
        • Hamada N.
        • Kanda Y.
        • Shimmura-Tomita M.
        • Kakehashi A.
        Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results.
        Jpn J Ophthalmol. 2018; 62: 544-553
        • Jin P.
        • Zou H.
        • Zhu J.
        • Xu X.
        • Jin J.
        • Chang T.C.
        • et al.
        Choroidal and retinal thickness in children with different refractive status measured by swept-source optical coherence tomography.
        Am J Ophthalmol. 2016; 168: 164-176
        • Mohler K.J.
        • Draxinger W.
        • Klein T.
        • Kolb J.P.
        • Wieser W.
        • Haritoglou C.
        • et al.
        Combined 60° wide-field choroidal thickness maps and high-definition en face vasculature visualization using swept-source megahertz OCT at 1050 nm.
        Invest Ophthalmol Vis Sci. 2015; 56: 6284-6293
        • Alonso-Caneiro D.
        • Read S.A.
        • Vincent S.J.
        • Collins M.J.
        • Wojtkowski M.
        Tissue thickness calculation in ocular optical coherence tomography.
        Biomed Opt Express. 2016; 7: 629-645