Advertisement
Research Article| Volume 44, ISSUE 3, 101343, June 2021

Download started.

Ok

The corneoscleral shape in keratoconus patients with and without specialty lens wear

  • Stefaan Van Nuffel
    Affiliations
    Department of Ophthalmology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium
    Search for articles by this author
  • Alejandra Consejo
    Affiliations
    Institute of Physical Chemistry, Polish Academy of Sciences, Jana Kazimierza 5, Warsaw, Poland
    Search for articles by this author
  • Carina Koppen
    Affiliations
    Faculty of Medical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium

    Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, Edegem, Belgium
    Search for articles by this author
  • Elke O. Kreps
    Correspondence
    Corresponding author at: Department of Ophthalmology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
    Affiliations
    Department of Ophthalmology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium

    Faculty of Medical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium

    Faculty of Medical Sciences, Ghent University, Sint-Pietersnieuwstraat 33, Ghent, Belgium
    Search for articles by this author

      Abstract

      Purpose

      To evaluate differences in corneoscleral shape in keratoconus patients with and without specialty lenses compared to controls.

      Methods

      A cross-sectional study was performed comparing three groups of keratoconus eyes: 24 lens-naïve keratoconus eyes (17 patients; group 1), 7 eyes with corneal lens wear (7 patients; group 2) and 7 eyes with scleral lens wear (7 patients; group 3). For comparison, 25 eyes of 25 emmetropic participants and 11 eyes of 11 astigmatic participants were included. Corneoscleral topography measurements taken with the Eye Surface Profiler (ESP, Eaglet Eye BV, Houten, Netherlands) were exported and assessed using custom-made software to demarcate the limbal radius, and to calculate sagittal height and corneoscleral asymmetry.

      Results

      In non-lens wearing keratoconus patients, sagittal height was found to be significantly larger than in control eyes, in both the corneal periphery and sclera (paired t-test, pairwise comparisons p < 0.01). The level of peripheral corneal and scleral asymmetry was also significantly higher in non-lens wearing keratoconus eyes compared to controls (t-test, p < 0.01). Both corneal and scleral lens wear resulted in significant changes to the shape of the corneal periphery and sclera. In all 3 groups of keratoconus eyes, asymmetry of the peripheral cornea showed a very strong correlation with scleral asymmetry (R2 = 0.90, 0.86 and 0.85 for groups 1–3, respectively).

      Conclusion

      The corneal periphery and sclera have a distinctly different shape in keratoconus eyes compared to controls. Specialty lens wear induces significant regional changes to the shape of the anterior eye in keratoconus eyes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mas Tur V.
        • MacGregor C.
        • Jayaswal R.
        • O’Brart D.
        • Maycock N.
        A review of keratoconus: diagnosis, pathophysiology, and genetics.
        Surv Ophthalmol. 2017; 62: 770-783https://doi.org/10.1016/j.survophthal.2017.06.009
        • Iskander D.R.
        • Wachel P.
        • Simpson P.N.
        • Consejo A.
        • Jesus D.A.
        Principles of operation, accuracy and precision of an Eye Surface Profiler.
        Ophthalmic Physiol Opt. 2016; 36: 266-278https://doi.org/10.1111/opo.12292
        • Consejo A.
        • Llorens-Quintana C.
        • Radhakrishnan H.
        • Iskander D.R.
        Mean shape of the human limbus.
        J Cataract Refract Surg. 2017; 43: 667-672https://doi.org/10.1016/j.jcrs.2017.02.027
        • Consejo A.
        • Llorens-Quintana C.
        • Bartuzel M.M.
        • Iskander D.R.
        • Rozema J.J.
        Rotation asymmetry of the human sclera.
        Acta Ophthalmol. 2019; 97: e266-70https://doi.org/10.1111/aos.13901
        • Piñero D.P.
        • Martínez-Abad A.
        • Soto-Negro R.
        • Ruiz-Fortes P.
        • Pérez-Cambrodí R.J.
        • Ariza-Gracia M.A.
        • et al.
        Differences in corneo-scleral topographic profile between healthy and keratoconus corneas.
        Cont Lens Anterior Eye. 2019; 42: 75-84https://doi.org/10.1016/j.clae.2018.05.005
        • Macedo-de-Araújo R.J.
        • van der Worp E.
        • González-Méijome J.M.
        In vivo assessment of the anterior scleral contour assisted by automatic profilometry and changes in conjunctival shape after miniscleral contact lens fitting.
        J Optom. 2019; 12: 131-140https://doi.org/10.1016/j.optom.2018.10.002
        • Schornack M.M.
        Scleral lenses: a literature review.
        Eye Contact Lens. 2015; 41: 3-11https://doi.org/10.1097/ICL.0000000000000083
        • Macedo-de-Araújo R.J.
        • Amorim-de-Sousa A.
        • Queirós A.
        • van der Worp E.
        • González-Méijome J.M.
        Relationship of placido corneal topography data with scleral lens fitting parameters.
        Cont Lens Anterior Eye. 2019; 42: 20-27https://doi.org/10.1016/j.clae.2018.07.005
        • Soeters N.
        • Visser E.S.
        • Imhof S.M.
        Scleral lens influence on corneal curvature and pachymetry in keratoconus patients.
        Cont Lens Anterior Eye. 2015; 38: 294-297https://doi.org/10.1016/j.clae.2015.03.006
        • Serramito M.
        • Carpena-Torres C.
        • Carballo J.
        • Piñero D.
        • Lipson M.
        • Carracedo G.
        Posterior cornea and thickness changes after scleral lens wear in keratoconus patients.
        Cont Lens Anterior Eye. 2019; 42: 85-91https://doi.org/10.1016/j.clae.2018.04.200
        • Serramito-Blanco M.
        • Carpena-Torres C.
        • Carballo J.
        • Piñero D.
        • Lipson M.
        • Carracedo G.
        Anterior corneal curvature and aberration changes after scleral lens wear in keratoconus patients with and without ring segments.
        Eye Contact Lens. 2019; 45: 141-148https://doi.org/10.1097/ICL.0000000000000534
        • Consejo A.
        • Rozema J.J.
        Scleral shape and its correlations with corneal astigmatism.
        Cornea. 2018; 37: 1047-1052https://doi.org/10.1097/ICO.0000000000001565
        • Consejo A.
        • Rozema J.J.
        In vivo anterior scleral morphometry, axial length and myopia.
        Cont Lens Anterior Eye. 2020; 43: 21-25https://doi.org/10.1016/j.clae.2018.10.021
        • Consejo A.
        • Behaegel J.
        • Van Hoey M.
        • Wolffsohn J.S.
        • Rozema J.J.
        • Iskander D.R.
        Anterior eye surface changes following miniscleral contact lens wear.
        Cont Lens Anterior Eye. 2019; 42: 70-74https://doi.org/10.1016/j.clae.2018.06.005
        • Consejo A.
        • Radhakrishnan H.
        • Iskander D.R.
        Scleral changes with accommodation.
        Ophthalmic Physiol Opt. 2017; 37: 263-274https://doi.org/10.1111/opo.12377
        • Consejo A.
        • Iskander D.R.
        Corneo-scleral limbus demarcation from 3D height data.
        Cont Lens Anterior Eye. 2016; 39: 450-457https://doi.org/10.1016/j.clae.2016.05.001
        • Consejo A.
        • Behaegel J.
        • Van Hoey M.
        • Iskander D.R.
        • Rozema J.J.
        Scleral asymmetry as a potential predictor for scleral lens compression.
        Ophthalmic Physiol Opt. 2018; 38: 609-616https://doi.org/10.1111/opo.12587
        • Harthan J.
        • Nau C.B.
        • Barr J.
        • et al.
        Scleral lens prescription and management practices: the SCOPE study.
        Eye Contact Lens. 2018; : S228-S232https://doi.org/10.1097/ICL.0000000000000387
        • Otten H.M.
        • van der Linden B.J.J.J.
        • Visser E.S.
        Clinical performance of a new bitangential mini-scleral lens.
        Optom Vis Sci. 2018; 95: 515-522https://doi.org/10.1097/OPX.0000000000001228
        • Sorbara L.
        • Maram J.
        • Mueller K.
        Use of the VisanteTM OCT to measure the sagittal depth and scleral shape of keratoconus compared to normal corneae: pilot study.
        J Optom. 2013; 6: 141-146https://doi.org/10.1016/j.optom.2013.02.002
        • McMonnies C.W.
        Abnormal rubbing and keratectasia.
        Eye Contact Lens. 2007; 33: 265-271https://doi.org/10.1097/ICL.0b013e31814fb64b
        • Schlatter B.
        • Beck M.
        • Frueh B.E.
        • Tappeiner C.
        • Zinkernagel M.
        Evaluation of scleral and corneal thickness in keratoconus patients.
        J Cataract Refract Surg. 2015; 41: 1073-1080https://doi.org/10.1016/j.jcrs.2014.08.035
        • Liu Z.
        • Pflugfelder S.C.
        The effects of long-term contact lens wear on corneal thickness, curvature, and surface regularity.
        Ophthalmology. 2000; 107: 105-111https://doi.org/10.1016/s0161-6420(99)00027-5
        • Tsai P.S.
        • Dowidar A.
        • Naseri A.
        • McLeod S.D.
        Predicting time to refractive stability after discontinuation of rigid contact lens wear before refractive surgery.
        J Cataract Refract Surg. 2004; 30: 2290-2294https://doi.org/10.1016/j.jcrs.2004.05.021
        • Leung K.K.
        RGP fitting philosophies for keratoconus.
        Clin Exp Optom. 1999; 82: 230-235https://doi.org/10.1111/j.1444-0938.1999.tb06653.x
        • Roberts C.J.
        • Dupps Jr, W.J.
        Biomechanics of corneal ectasia and biomechanical treatments.
        J Cataract Refract Surg. 2014; 40: 991-998https://doi.org/10.1016/j.jcrs.2014.04.013
        • Bullimore M.A.
        • Johnson L.A.
        Overnight orthokeratology [published online ahead of print, 2020 Apr 22].
        Cont Lens Anterior Eye. 2020; (S1367-0484(20)30061-30068)https://doi.org/10.1016/j.clae.2020.03.018
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Collins M.J.
        Morphological changes in the conjunctiva, episclera and sclera following short-term miniscleral contact lens wear in rigid lens neophytes.
        Cont Lens Anterior Eye. 2016; 39: 53-61https://doi.org/10.1016/j.clae.2015.06.008