Research Article| Volume 44, ISSUE 3, 101340, June 2021

Download started.


Predicting initial base curve of the rigid contact lenses according to Javal keratometry findings in patients with keratoconus



      To find an appropriate correlation between the base curve (BC) of rigid gas permeable (RGP) contact lenses and manual keratometry findings in Iranian patients with keratoconus (KCN) in order to simplify the fitting process, reduce the time, and lower the costs.


      This retrospective study was done in 121 eyes of 69 patients with KCN fitted with a specific trial set of RGP contact lenses over a 7-year period. The specifications of the final lens parameters included power, total diameter (1), and BC, the first two of which were fixed in all of the lenses in the trial set while BC was changed in 0.1-mm steps. Javal keratometer was used to measure keratometric values. The final fit assessment was performed based on the standard criterion of "three-point touch".


      Single and multiple linear correlations were done and the result was the following equation: BC = 2.455 (constant of the final multiple regression model) + 0.280 (steep keratometry) + 0.368 (flat keratometry) + 0.047 (corneal astigmatism)


      The advantages of this study include simplifying the RGP fitting process, reducing the examination time, lowering the costs, enhancing the confidence of the examiners and patients, easier lens fitting in remote places where more advanced devices are not accessible.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Alió J.L.
        Keratoconus – recent advances in diagnosis and treatment.
        Springer International Publishing, Cham, Switzerland2017
        • Ozkurt Y.
        • Atakan M.
        • Gencaga T.
        • Akkaya S.
        Contact lens visual rehabilitation in keratoconus and corneal keratoplasty.
        J Ophthalmol. 2012; 2012: 832070
        • Xie P.Y.
        • Wang D.
        • Yang L.N.
        • Zhou W.J.
        The evaluation of visual quality in keratoconus eyes corrected by rigid gas-permeable contact lens.
        Zhonghua Yan Ke Za Zhi. 2005; 41: 1086-1091
        • Shneor E.
        • Millodot M.
        • Blumberg S.
        • Ortenberg I.
        • Behrman S.
        • Gordon-Shaag A.
        Characteristics of 244 patients with keratoconus seen in an optometric contact lens practice.
        Clin Exp Optom. 2013; 96: 219-224
        • Gokul D.V.
        • Patel G.A.
        • Watters C.N.J.
        • McGhee
        The natural history of corneal topographic progression of keratoconus after age 30 years in non-contact lens wearers.
        Br J Ophthalmol. 2017; 101: 839-844
        • Gordon-Shaag M.
        • Millodot E.
        • Shneor Y.
        • Liu
        The genetic and environmental factors for keratoconus.
        Biomed Res Int. 2015; 2015: 795738
        • Loukovitis E.
        • Sfakianakis K.
        • Syrmakesi P.
        • Tsotridou E.
        • Orfanidou M.
        • Bakaloudi D.R.
        • et al.
        Genetic aspects of keratoconus: a literature review exploring potential genetic contributions and possible genetic relationships with comorbidities.
        Ophthalmol Ther. 2018; 7: 263-292
        • Fink B.A.
        • Sinnott L.T.
        • Wagner H.
        • Friedman C.
        • Zadnik K.
        • Group C.S.
        The influence of gender and hormone status on the severity and progression of keratoconus.
        Cornea. 2010; 29: 65-72
        • Raiskup F.
        • Lenk J.
        • Herber R.
        • Gatzioufas Z.
        • Sporl E.
        Therapeutic options in keratoconus.
        Klin Monbl Augenheilkd. 2018; 235: 1148-1158
        • Bilgihan K.
        • Hondur A.
        • Sul S.
        • Ozturk S.
        Pregnancy-induced progression of keratoconus.
        Cornea. 2011; 30: 991-994
        • Shetty R.
        • Sharma A.
        • Pahuja N.
        • Chevour P.
        • Padmajan N.
        • Dhamodaran K.
        • et al.
        Oxidative stress induces dysregulated autophagy in corneal epithelium of keratoconus patients.
        PLoS One. 2017; 12: e0184628
        • Fatima T.
        • Acharya M.C.
        • Mathur U.
        • Barua P.
        Demographic profile and visual rehabilitation of patients with keratoconus attending contact lens clinic at a tertiary eye care centre.
        Cont Lens Anterior Eye. 2010; 33: 19-22
        • Downie L.E.
        • Lindsay R.G.
        Contact lens management of keratoconus.
        Clin Exp Optom. 2015; 98: 299-311
        • Ghosh S.
        • Mutalib H.A.
        • Sharanjeet K.
        • Ghoshal R.
        • Retnasabapathy S.
        Effects of contact lens wearing on keratoconus: a confocal microscopy observation.
        Int J Ophthalmol. 2017; 10: 228-234
        • Hwang J.S.
        • Lee J.H.
        • Wee W.R.
        • Kim M.K.
        Effects of multicurve RGP contact lens use on topographic changes in keratoconus.
        Korean J Ophthalmol. 2010; 24: 201-206
        • Edrington T.B.
        • Barr J.T.
        • Zadnik K.
        • Davis L.J.
        • Gundel R.E.
        • Libassi D.P.
        • et al.
        Standardized rigid contact lens fitting protocol for keratoconus.
        Optom Vis Sci. 1996; 73: 369-375
        • Donshik P.C.
        • Reisner D.S.
        • Luistro A.E.
        The use of computerized videokeratography as an aid in fitting rigid gas permeable contact lenses.
        Trans Am Ophthalmol Soc. 1996; 94 (discussion 143–135): 135-143
        • Edrington T.B.
        • Szczotka L.B.
        • Barr J.T.
        • Achtenberg J.F.
        • Burger D.S.
        • Janoff A.M.
        • et al.
        Rigid contact lens fitting relationships in keratoconus. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group.
        Optom Vis Sci. 1999; 76: 692-699
        • Lin Y.-C.
        • Lee J.-S.
        • Wu S.-C.
        • Kao L.-Y.
        • Li C.-Y.
        • Lin K.-K.
        Correction of keratoconus with rigid gas-permeable contact lenses.
        Ann Ophthalmol. 2003; 35: 19-24
        • Rajabi M.T.
        • Mohajernezhad-Fard Z.
        • Naseri S.K.
        • Jafari F.
        • Doostdar A.
        • Zarrinbakhsh P.
        • et al.
        Rigid contact lens fitting based on keratometry readings in keratoconus patients: predicting formula.
        Int J Ophthalmol. 2011; 4: 525-528
        • Nejabat M.
        • Khalili M.R.
        • Dehghani C.
        Cone location and correction of keratoconus with rigid gas-permeable contact lenses.
        Cont Lens Anterior Eye. 2012; 35: 17-21
        • Mandathara P.S.
        • Fatima M.
        • Taureen S.
        • Dumpati S.
        • Ali M.H.
        • Rathi V.
        RGP contact lens fitting in keratoconus using FITSCAN technology.
        Cont Lens Anterior Eye. 2013; 36: 126-129
        • Ortiz-Toquero S.
        • Rodriguez G.
        • de Juan V.
        • Martin R.
        New web-based algorithm to improve rigid gas permeable contact lens fitting in keratoconus.
        Cont Lens Anterior Eye. 2017; 40: 143-150
        • Ortiz-Toquero S.
        • Rodriguez G.
        • de Juan V.
        • Martin R.
        Rigid gas permeable contact Lens fitting using new software in keratoconic eyes.
        Optom Vis Sci. 2016; 93: 286-292
        • Sindt T.
        • Grout R.Kojima
        Evaluating virtual fitting for keratoconus.
        Contact Lens Spectrum. 2011; 26: 39-43
        • Bhatoa N.S.
        • Hau S.
        • Ehrlich D.P.
        A comparison of a topography-based rigid gas permeable contact lens design with a conventionally fitted lens in patients with keratoconus.
        Cont Lens Anterior Eye. 2010; 33: 128-135
        • Jani B.R.
        • Szczotka L.B.
        Efficiency and accuracy of two computerized topography software systems for fitting rigid gas permeable contact lenses.
        CLAO J. 2000; 26: 91-96
        • Szczotka L.B.
        Clinical evaluation of a topographically based contact lens fitting software.
        Optom Vis Sci. 1997; 74: 14-19
        • Ramdas W.D.
        • Vervaet C.J.
        • Bleyen I.
        Corneal topography for pancorneal toric edge rigid gas-permeable contact lens fitting in patients with keratoconus, and differences in age and gender.
        Cont Lens Anterior Eye. 2014; 37: 20-25
        • Sorbara L.
        • Dalton K.
        The use of video-keratoscopy in predicting contact lens parameters for keratoconic fitting.
        Cont Lens Anterior Eye. 2010; 33: 112-118
        • Jain A.K.
        • Sukhija J.
        Rose-K contact lens for keratoconus.
        Indian J Ophthalmol. 2007; 55: 121-125
        • Stapleton F.
        • Tan J.
        Impact of contact Lens material, design, and fitting on discomfort.
        Eye Contact Lens. 2017; 43: 32-39
        • Hasani M.
        • Hashemi H.
        • Jafarzadehpur E.
        • Yekta A.A.
        • Dadbin N.
        • Khabazkhoob M.
        Estimation of the hybrid lens parameters through rigid gas permeable lens fitting.
        J Curr Ophthalmol. 2016; 28: 137-141