Advertisement

On the in vivo assessment of goblet cells of the human bulbar conjunctiva by confocal microscopy – A review

Published:January 15, 2020DOI:https://doi.org/10.1016/j.clae.2020.01.004

      Highlights

      • Provides the first objective analysis of confocal assessments of conjunctival goblet cells.
      • Analyses reveal notable differences between studies that need to be addressed.
      • Differences between studies appear to be uniquely dependent on the strategies used for image selection.

      Abstract

      Background

      In vivo confocal microscopy (IVCM) has been used for over 10 years to assess the goblet cell density (GCD) within the human conjunctiva, but the reported values have been variable with no obvious indications as to why.

      Methods

      From publications between 2008 and 2019, representative GCD values were extracted, as well as on the image sampling strategy used.

      Results

      Average GCD values for any particular group of individuals ranged from 7 to 979 goblet cells / sq. mm, and with one notable outlier removed, an overall group-mean value for GCD (+/− SD) from single site locations was 207 +/− 143 goblet cells / sq. mm from 15 data sets for those usually designated as control subjects, with a value of 190 +/− 161 goblet cells / sq. mm calculated from 20 single site data sets from other (patient) groups. An overall analysis indicated that the reported average values for GCD from different groups of individuals increased according to the number of images assessed / individual (Spearman rho = 0.304), on the number of individuals evaluated to generate an averaged value for each group (rho = 0.367), and the total number of images assessed (rho = 0.346, multivariate analysis partial r = greater or = to 0.522).

      Conclusions

      In the use of confocal microscopy to assess the number of goblet cells in the human bulbar conjunctiva, the substantial differences reported appear to be linked to the protocols used for image selection, and some type of standardization needs to be developed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Doughty M.J.
        Comparative anatomy and physiology of the cornea and conjunctiva.
        in: Martin Herran R. Corrales R.M. Ocular surface. CRC Press – 2012, 2012: 32-78
        • Tiffany J.M.
        The normal tear film.
        Dev Ophthalmol. 2008; 41: 1-20
        • Doughty M.J.
        Functional morphology of mucosal goblet cells based on spatial separation of orifice openings to the surface - application to the rabbit bulbar conjunctiva.
        Tissue Cell. 2014; 46: 241-248
        • Doughty M.J.
        Contact lens wear and the goblet cells of the human conjunctiva-A review.
        Cont Lens Anterior Eye. 2011; 34: 157-163
        • Sapkota K.
        • Franco S.
        • Sampaio P.
        • Lira M.
        Effect of three months of soft contact lens wear on conjunctival cytology.
        Clin Exp Optom. 2016; 99: 336-341
        • Doughty M.J.
        Goblet cells of the normal human conjunctiva and their assessment by impression cytology sampling.
        Ocular Surf. 2012; 10: 149-169
        • Kobayashi A.
        • Yoshita T.
        • Sugiyama K.
        In vivo findings of the bulbar/palpebral conjunctiva and presumed Meibomian glands by laser scanning confocal microscopy.
        Cornea. 2005; 24: 985-988
        • Jalbert I.
        • Stapleton F.
        • Papas E.
        • Sweeney D.F.
        • Coroneo M.
        In vivo confocal microscopy of the human cornea.
        Br J Ophthalmol. 2003; 87: 225-236
        • Colorado L.H.
        • Alzahrani Y.
        • Pritchard N.
        • Efron N.
        Assessment of conjunctival goblet cell density using laser scanning confocal microscopy versus impression cytology.
        Contact Lens Anterior Eye. 2016; 39: 221-226
        • Jürgens C.
        • Rath R.
        • Giebel J.
        • Tost F.H.
        Laser scanning confocal microscopy for conjunctival epithelium imaging.
        Dev Ophthalmol. 2010; 45: 71-82
        • Messmer E.M.
        • Mackert M.J.
        • Zapp D.M.
        • Kampik A.
        In vivo confocal microscopy of normal conjunctiva and conjunctivitis.
        Cornea. 2006; 25: 781-788
        • Villani E.
        • Beretta S.
        • Galimberti D.
        • Viola F.
        • Ratiglia R.
        In vivo confocal microscopy of conjunctival roundish bright objects: young, older, and Sjögren subjects.
        Invest Ophthalmol Vis Sci. 2011; 52: 4829-4832
        • Efron N.
        • Al-Dossari M.
        • Pritchard N.
        In vivo confocal microscopy of the bulbar conjunctiva.
        Graefes Arch Clin Exp Ophthalmol. 2009; 37: 335-344
        • Colorado L.H.
        • Alzahrani Y.
        • Pritchard N.
        • Efron N.
        Time course of changes in goblet cell density in symptomatic and asymptomatic contact lens wearers.
        Invest Ophthalmol Vis Sci. 2016; 57: 2888-2894
        • Wei Y.H.
        • Chen W.L.
        • Hu F.R.
        • Liao S.L.
        In vivo confocal microscopy of bulbar conjunctiva in patients with Graves’ ophthalmopathy.
        J Formos Med Assoc. 2015; 114: 965-972
        • Ciancaglini M.
        • Carpineto P.
        • Agnifili L.
        • Nubile M.
        • Fasanella V.
        • Lanzini M.
        • et al.
        An in vivo confocal microscopy and impression cytology analysis of preserved and unpreserved levobunolol-induced conjunctival changes.
        Eur J Ophthalmol. 2008; 18: 400-407
        • Agnifili L.
        • Fasanella V.
        • Mastropasqua R.
        • Frezzotti P.
        • Curcio C.
        • Brescia L.
        • et al.
        In vivo goblet cell density as a potential indicator of glaucoma filtration surgery outcome.
        Invest Ophthalmol Vis Sci. 2016; 57: 2928-2935
        • Mastropasqua R.
        • Fasanella V.
        • Brescia L.
        • Oddone F.
        • Mariotti C.
        • Di Staso S.
        • et al.
        In vivo confocal imaging of the conjunctiva as a predictive tool for the glaucoma filtration surgery outcome.
        Invest Ophthalmol Vis Sci. 2017; 58: BIO114-BIO120
        • Agnifili L.
        • Mastropasqua R.
        • Fasanella V.
        • Brescia L.
        • Scatena B.
        • Oddone F.
        • et al.
        Meibomian gland features and conjunctival goblet cell density in glaucomatous patients controlled with prostaglandin/ timolol fixed combinations: a case control, cross-sectional study.
        J Glaucoma. 2018; 27: 364-370
        • Mastropasqua L.
        • Agnifili L.
        • Fasanella V.
        • Curcio C.
        • Ciabattoni C.
        • Mastropasqua R.
        • et al.
        Conjunctival goblet cells density and preservative-free tafluprost therapy for glaucoma: an in vivo confocal microscopy and impression cytology study.
        Acta Ophthalmol (Copenh). 2013; 91: e397-e405
        • Di Staso S.
        • Agnifili L.
        • Ciancaglini M.
        • Murano G.
        • Borrelli E.
        • Mastropasqua L.
        In vivo scanning laser confocal microscopy of conjunctival goblet cells in medically-controlled glaucoma.
        In Vivo (Brooklyn). 2018; 32: 437-443
        • Frezzotti P.
        • Fogagnolo P.
        • Haka G.
        • Motolese I.
        • Iester M.
        • Bagaglia S.A.
        • et al.
        In vivo confocal microscopy of conjunctiva in preservative-free timolol 0.1% gel formulation therapy for glaucoma.
        Acta Ophthalmol (Copenh). 2014; 92: e133-140
        • Efron N.
        • Al-Dossari M.
        • Pritchard N.
        Confocal microscopy of the bulbar conjunctiva in contact lens wear.
        Cornea. 2010; 29: 43-52
        • Zhu W.
        • Hong J.
        • Zheng T.
        • Le Q.
        • Xu J.
        • Sun X.
        Age-related changes of human conjunctiva on in vivo confocal microscopy.
        Br J Ophthalmol. 2010; 94: 1448-1453
        • Cui X.
        • Xiang J.
        • Zhu W.
        • Wei A.
        • Le Q.
        • Xu J.
        • et al.
        Vitamin A palmitate and carbomer gel protects the conjunctiva of patients with long-term prostaglandin analogs application.
        J Glaucoma. 2016; 25: 487-492
        • Iester M.
        • Oddone F.
        • Fogagnolo P.
        • Frezzotti P.
        • Figus M.
        • Confocal Microscopy Study Group
        Changes in the morphological and functional patterns of the ocular surface in patients treated with prostaglandin analogues after the use of TSP 0.5%® preservative-free eyedrops: a prospective, multicenter study.
        Ophthalmic Res. 2014; 51: 146-152
        • Agnifili L.
        • Brescia L.
        • Oddone F.
        • Sacchi M.
        • D’Ugo E.
        • Di Marzio G.
        • et al.
        The ocular surface after successful glaucoma filtration surgery: a clinical, in vivo confocal microscopy, and immune-cytology study.
        Sci Rep. 2019; 9: 11299
        • Hong J.
        • Zhu W.
        • Zhuang H.
        • Xu J.
        • Sun X.
        • Le Q.
        • et al.
        In vivo confocal microscopy of conjunctival goblet cells in patients with Sjogren’s syndrome dry eye.
        Br J Ophthalmol. 2010; 94: 1454-1458
        • Le QH W.W.T.
        • Hong J.X.
        • Sun X.H.
        • Zheng T.Y.
        • Zhu W.Q.
        • Xu J.J.
        An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns.
        Invest Ophthalmol Vis Sci. 2010; 51: 1397-1400
        • Zar J.H.
        Biostatistical analysis.
        2nd ed. Prentice-Hall, NJ1984