Advertisement
Research Article| Volume 43, ISSUE 1, P44-53, February 2020

Download started.

Ok

Stability of peripheral refraction changes in orthokeratology for myopia

  • Kate L. Gifford
    Correspondence
    Corresponding author at: Kate L Gifford. School of Optometry and Vision Science, and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
    Affiliations
    School of Optometry and Vision Science, and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove QLD 4059 Australia
    Search for articles by this author
  • Paul Gifford
    Affiliations
    School of Optometry and Vision Science, Faculty of Science, University of New South Wales, Rupert Myers Building, Barker Street, Kensington NSW 2033 Australia
    Search for articles by this author
  • Peter L. Hendicott
    Affiliations
    School of Optometry and Vision Science, and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove QLD 4059 Australia
    Search for articles by this author
  • Katrina L. Schmid
    Affiliations
    School of Optometry and Vision Science, and Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove QLD 4059 Australia
    Search for articles by this author
Published:November 30, 2019DOI:https://doi.org/10.1016/j.clae.2019.11.008

      Abstract

      Purpose

      Orthokeratology (OK) is known to alter relative peripheral refraction (RPR) with this presumed to be its key myopia control mechanism. A prospective, longitudinal study was performed to examine stability of OK-induced RPR changes in myopic children and young adults.

      Methods

      RPR of twelve children (C)(8–16 years) and eight adults (A)(18–29 years) with spherical equivalent refraction of -0.75 to -5.00D were measured unaided and while wearing single vision soft contact lenses (SCL). Measurements were repeated after 1, 6 and 12 months of OK wear. RPR was measured using an open-field Shin Nippon SRW-5000 autorefractor at 10, 20 and 30 degrees nasally (N) and temporally (T), converted into power vectors M, J0 and J45. On-axis refractions and axial lengths (IOL Master) were also measured.

      Results

      Compared to the unaided state, 1-month of OK wear shifted the RPR in the myopic direction at 30 T (C: p = 0.023; A:, p = 0.002) and 30 N (C&A, p = 0.003) and was stable thereafter, with similar changes compared to SCL wear. J0 showed a myopic shift in comparison to both unaided and SCL correction in children but not adults, and J45 did not change in either group. The on-axis OK correction was predictive of the RPR shift in both children and adults at 30 T (C: r=−0.58, p = 0.029; A: r=−0.92, p < 0.001) and 30 N (C: r=−0.60, p = 0.024; A: r=−0.74, p = 0.013) with symmetry of RPR shifts (C: r = 0.67, p = 0.008; A: r = 0.85, p = 0.004). No relationships between changes in RPR and axial length were found after twelve months of OK wear; level of myopia was stable in both groups.

      Conclusion

      Relative to both unaided and single vision SCL correction, OK shifted the RPR in the myopic direction; the RPR was stable from 1 to 12 months. The RPR shift in OK wear varied with the degree of myopia but was not correlated with myopia progression.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hoogerheide J.
        • Rempt F.
        • Hoogenboom W.P.
        Acquired myopia in young pilots.
        Ophthalmologica. 1971; 163: 209-215
        • Mutti D.O.
        • Hayes J.R.
        • Mitchell G.L.
        • Jones L.A.
        • Moeschberger M.L.
        • Cotter S.A.
        • et al.
        Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia.
        Invest Ophthalmol Vis Sci. 2007; 48: 2510-2519
        • Mutti D.O.
        • Sholtz R.I.
        • Friedman N.E.
        • Zadnik K.
        Peripheral Refraction and Ocular Shape in Children.
        Invest Ophthalmol Vis Sci. 2000; 41: 1022-1030
        • Mutti D.O.
        • Sinnott L.T.
        • Mitchell G.L.
        • Jones-Jordan L.A.
        • Moeschberger M.L.
        • Cotter S.A.
        • et al.
        Relative peripheral refractive error and the risk of onset and progression of myopia in children.
        Invest Ophthalmol Vis Sci. 2011; 52: 199-205
        • Sng C.C.
        • Lin X.Y.
        • Gazzard G.
        • Chang B.
        • Dirani M.
        • Lim L.
        • et al.
        Change in peripheral refraction over time in Singapore Chinese children.
        Invest Ophthalmol Vis Sci. 2011; 52: 7880-7887
        • Atchison D.A.
        • Li S.M.
        • Li H.
        • Li S.Y.
        • Liu L.R.
        • Kang M.T.
        • et al.
        Relative peripheral hyperopia does not predict development and progression of myopia in children.
        Invest Ophthalmol Vis Sci. 2015; 56: 6162-6170
        • Lee T.T.
        • Cho P.
        Relative peripheral refraction in children: twelve-month changes in eyes with different ametropias.
        Ophthalmic Physiol Opt. 2013; 33: 283-293
        • Li S.M.
        • Li S.Y.
        • Liu L.R.
        • Zhou Y.H.
        • Yang Z.
        • Kang M.T.
        • et al.
        G. Anyang childhood eye study, peripheral refraction in 7- and 14-year-old children in central China: the anyang childhood eye study.
        Br J Ophthalmol. 2015; 99: 674-679
        • Sng C.C.A.
        • Lin X.-Y.
        • Gazzard G.
        • Chang B.
        • Dirani M.
        • Chia A.
        • et al.
        Peripheral refraction and refractive error in Singapore Chinese children.
        Invest Ophthalmol Vis Sci. 2011; 52: 1181-1190
        • Atchison D.A.
        • Pritchard N.
        • Schmid K.L.
        Peripheral refraction along the horizontal and vertical visual fields in myopia.
        Vision Res. 2006; 46: 1450-1458
        • Thibos L.N.
        • Wheeler W.
        • Horner D.
        Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error.
        Optom Vis Sci. 1997; 74: 367-375
        • Radhakrishnan H.
        • Allen P.M.
        • Calver R.I.
        • Theagarayan B.
        • Price H.
        • Rae S.
        • et al.
        Peripheral refractive changes associated with myopia progression.
        Invest Ophthalmol Vis Sci. 2013; 54: 1573-1581
        • Atchison D.A.
        Optical models for human myopic eyes.
        Vision Res. 2006; 46: 2236-2250
        • Berntsen D.A.
        • Kramer C.E.
        Peripheral defocus with spherical and multifocal soft contact lenses.
        Optom Vis Sci. 2013; 90: 1215-1224
        • Wildsoet C.F.
        • Chia A.
        • Cho P.
        • Guggenheim J.A.
        • Polling J.R.
        • Read S.
        • et al.
        IMI - interventions for controlling myopia onset and progression report.
        Invest Ophthalmol Vis Sci. 2019; 60: M106-M131
        • Smith 3rd, E.L.
        • Kee C.S.
        • Ramamirtham R.
        • Qiao-Grider Y.
        • Hung L.F.
        Peripheral vision can influence eye growth and refractive development in infant monkeys.
        Invest Ophthalmol Vis Sci. 2005; 46: 3965-3972
        • Smith Iii E.L.
        • Hung L.-F.
        • Huang J.
        Relative peripheral hyperopic defocus alters central refractive development in infant monkeys.
        Vision Res. 2009; 49: 2386-2392
        • Sankaridurg P.
        • Holden B.
        • Smith 3rd, E.
        • Naduvilath T.
        • Chen X.
        • de la Jara P.L.
        • et al.
        Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results.
        Invest Ophthalmol Vis Sci. 2011; 52: 9362-9367
        • Walline J.J.
        • Greiner K.L.
        • McVey M.E.
        • Jones-Jordan L.A.
        Multifocal contact lens myopia control.
        Optom Vis Sci. 2013; 90: 1207-1214
        • Sun Y.
        • Xu F.
        • Zhang T.
        • Liu M.
        • Wang D.
        • Chen Y.
        • et al.
        Orthokeratology to control myopia progression: a meta-analysis.
        PLoS One. 2015; 10e0124535
        • Si J.K.
        • Tang K.
        • Bi H.S.
        • Guo D.D.
        • Guo J.G.
        • Wang X.R.
        Orthokeratology for myopia control: a meta-analysis.
        Optom Vis Sci. 2015; 92: 252-257
        • Queirós A.
        • González-Méijome J.M.
        • Jorge J.
        • Villa-Collar C.
        • Gutiérrez A.R.
        Peripheral refraction in myopic patients after orthokeratology.
        Optom Vis Sci. 2010; 87: 323-329
        • Charman W.N.
        • Mountford J.
        • Atchison D.A.
        • Markwell E.L.
        Peripheral refraction in orthokeratology patients.
        Optom Vis Sci. 2006; 83: 641-648
        • Gonzalez-Meijome J.M.
        • Faria-Ribeiro M.A.
        • Lopes-Ferreira D.P.
        • Fernandes P.
        • Carracedo G.
        • Queiros A.
        Changes in peripheral refractive profile after orthokeratology for different degrees of myopia.
        Curr Eye Res. 2016; 41: 199-207
        • Kang P.
        • Swarbrick H.
        Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses.
        Optom Vis Sci. 2011; 88: 476-482
        • Smith E.L.I.
        Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia.
        Optom Vis Sci. 2011; 88: 1029-1044
        • Nichols J.J.
        • Marsich M.M.
        • Nguyen M.
        • Barr J.T.
        • Bullimore M.A.
        Overnight orthokeratology.
        Optom Vis Sci. 2000; 77: 252-259
        • Stillitano I.
        • Schor P.
        • Lipener C.
        • Hofling-Lima A.L.
        Long-term follow-up of orthokeratology corneal reshaping using wavefront aberrometry and contrast sensitivity.
        Eye Cont Lens. 2008; 34: 140-145
        • Mountford J.
        An analysis of the changes in corneal shape and refractive error induced by accelerated orthokeratology.
        Int Contact Lens Clin. 1997; 24: 128-144
        • Cho P.
        • Cheung S.W.
        • Mountford J.
        • White P.
        Good clinical practice in orthokeratology.
        Contact Lens Anterior Eye. 2008; 31: 17-28
        • Gifford K.L.
        • Gifford P.
        • Hendicott P.L.
        • Schmid K.L.
        Zone of clear single binocular vision in myopic orthokeratology.
        Eye Contact Lens. 2019; https://doi.org/10.1097/ICL.0000000000000614
        • Queiros A.
        • Gonzalez-Meijome J.
        • Jorge J.
        Influence of fogging lenses and cycloplegia on open-field automatic refraction.
        Ophthalmic Physiol Opt. 2008; 28: 387-392
        • Chan B.
        • Cho P.
        • Cheung S.W.
        Repeatability and agreement of two A-scan ultrasonic biometers and IOLMaster in non-orthokeratology subjects and post-orthokeratology children.
        Clin Exp Optom. 2006; 89: 160-168
        • Mallen E.A.
        • Wolffsohn J.S.
        • Gilmartin B.
        • Tsujimura S.
        Clinical evaluation of the Shin-Nippon SRW-5000 autorefractor in adults.
        Ophthalmic Physiol Opt. 2001; 21: 101-107
        • Ehsaei A.
        • Chisholm C.M.
        • Mallen E.A.
        • Pacey I.E.
        The effect of instrument alignment on peripheral refraction measurements by automated optometer.
        Ophthalmic Physiol Opt. 2011; 31: 413-420
        • Kang P.
        • Gifford P.
        • McNamara P.
        • Wu J.
        • Yeo S.
        • Vong B.
        • et al.
        Peripheral refraction in different ethnicities.
        Invest Ophthalmol Vis Sci. 2010; 51: 6059-6065
        • Queiros A.
        • Jorge J.
        • Gonzalez-Meijome J.M.
        Influence of fogging lenses and cycloplegia on peripheral refraction.
        J Optom. 2009; 2: 83-89
        • Mountford J.
        Chapter 6 - Trial lens fitting, Orthokeratology.
        Butterworth-Heinemann, London2004: 139-173
        • Mountford J.
        Retention and regression of orthokeratology with time.
        Int Contact Lens Clin. 1998; 25: 59-64
        • Armstrong R.A.
        Statistical guidelines for the analysis of data obtained from one or both eyes.
        Ophthalmic Physiol Opt. 2013; 33: 7-14
        • Armstrong R.A.
        When to use the Bonferroni correction.
        Ophthalmic Physiol Opt. 2014; 34: 502-508
        • Kang P.
        • Fan Y.
        • Oh K.
        • Trac K.
        • Zhang F.
        • Swarbrick H.
        Effect of single vision soft contact lenses on peripheral refraction.
        Optom Vis Sci. 2012; 89: 1014-1021
        • Zhong Y.
        • Chen Z.
        • Xue F.
        • Miao H.
        • Zhou X.
        Central and peripheral corneal power change in myopic orthokeratology and its relationship with 2-year axial length change.
        Invest Ophthalmol Vis Sci. 2015; 56: 4514-4519
        • Davies L.N.
        • Mallen E.A.
        • Wolffsohn J.S.
        • Gilmartin B.
        Clinical evaluation of the shin-nippon NVision-K 5001/Grand seiko WR-5100K autorefractor.
        Optom Vis Sci. 2003; 80: 320-324
        • Osuagwu U.L.
        • Suheimat M.
        • Wolffsohn J.S.
        • Atchison D.A.
        Peripheral refraction validity of the shin-nippon SRW5000 autorefractor.
        Optom Vis Sci. 2016; 93: 1254-1261
        • Bullimore M.A.
        • Gilmartin B.
        • Royston J.M.
        Steady-state accommodation and ocular biometry in late-onset myopia, Documenta Ophthalmologica.
        Adv Ophthalmol. 1992; 80: 143-155
        • Jiang B.-c.
        • Morse S.E.
        Oculomotor functions and late-onset myopia.
        Ophthalmic Physiol Opt. 1999; 19: 165-172
        • Faria-Ribeiro M.
        • Queiros A.
        • Lopes-Ferreira D.
        • Jorge J.
        • Gonzalez-Meijome J.M.
        Peripheral refraction and retinal contour in stable and progressive myopia.
        Optom Vis Sci. 2013; 90: 9-15
        • Queiros A.
        • Amorim-de-Sousa A.
        • Lopes-Ferreira D.
        • Villa-Collar C.
        • Gutierrez A.R.
        • Gonzalez-Meijome J.M.
        Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery.
        Eye Vis (Lond). 2018; 5: 12
        • Swarbrick H.A.
        • Alharbi A.
        • Watt K.
        • Lum E.
        • Kang P.
        Myopia control during orthokeratology lens wear in children using a novel study design.
        Ophthalmology. 2015; 122: 620-630
        • Faul F.
        • Erdfelder E.
        • Buchner A.
        • Lang A.G.
        Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
        Behav Res Methods. 2009; 41: 1149-1160