The temporal dynamics of miniscleral contact lenses: Central corneal clearance and centration

  • Stephen J. Vincent
    Correspondence
    Corresponding author.
    Affiliations
    Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Room D513, O Block, Victoria Park Road, Kelvin Grove 4059, Brisbane, Queensland, Australia
    Search for articles by this author
  • David Alonso-Caneiro
    Affiliations
    Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Room D513, O Block, Victoria Park Road, Kelvin Grove 4059, Brisbane, Queensland, Australia
    Search for articles by this author
  • Michael J. Collins
    Affiliations
    Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Room D513, O Block, Victoria Park Road, Kelvin Grove 4059, Brisbane, Queensland, Australia
    Search for articles by this author

      Abstract

      Purpose

      To examine the time course of the reduction in central corneal clearance and horizontal and vertical lens translation (decentration) during miniscleral contact lens wear and the theoretical influence upon the optics of the post-lens tear layer.

      Methods

      Repeated high-resolution OCT images were captured over an 8 h period of miniscleral contact lens wear (using a rotationally symmetric 16.5 mm diameter lens) in 15 young, healthy participants with normal corneae. Central corneal clearance and lens decentration were derived from OCT images using semi-automated image processing techniques.

      Results

      Central corneal clearance decreased exponentially over time, reducing by 76 ± 8 μm over 8 h. Fifty percent of this reduction occurred within 45 min of lens wear and seventy-five percent within 2 h, with thinning of the post-lens tear layer plateauing 4 h after lens insertion. Lens translation exhibited a similar pattern of change (0.18 ± 0.04 mm temporal and 0.20 ± 0.09 mm inferior decentration) stabilising 1.5–2 h after insertion. The change in the lens fit over time resulted in a small reduction in the power of the post-lens tear layer (−0.12 ± 0.01 D) and induced a prismatic effect of 0.01 ± 0.16 Δ base out and 0.50 ± 0.19 Δ base down relative to the pupil centre.

      Conclusions

      For the miniscleral contact lens studied, horizontal and vertical lens decentration followed an exponential decay over 8 h that plateaued approximately 2 h after lens insertion, while central post-lens tear layer thinning plateaued after 4 h of lens wear.

      Keywords

      To read this article in full you will need to make a payment

      References

        • van der Worp E.
        • Bornman D.
        • Ferreira D.L.
        • Faria-Ribeiro M.
        • Garcia-Porta N.
        • Gonzalez-Meijome J.M.
        Modern scleral contact lenses: a review.
        Cont. Lens Anterior Eye. 2014; 37: 240-250
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Collins M.J.
        Morphological changes in the conjunctiva, episclera and sclera following short-term miniscleral contact lens wear in rigid lens neophytes.
        Cont. Lens Anterior Eye. 2016; 39: 53-61
        • Michaud L.
        • van der Worp E.
        • Brazeau D.
        • Warde R.
        • Giasson C.J.
        Predicting estimates of oxygen transmissibility for scleral lenses.
        Cont. Lens Anterior Eye. 2012; 35: 266-271
        • Bergmanson J.P.
        • Barnett M.
        • Naroo S.A.
        Scleral gas permeable lenses have come of age.
        Cont. Lens Anterior Eye. 2016; 39: 247-248
        • Bergmanson J.P.
        • Ezekiel D.F.
        • van der Worp E.
        Scleral contact lenses and hypoxia: theory versus practice.
        Cont. Lens Anterior Eye. 2015; 38: 145-147
        • Carracedo G.
        • Serramito-Blanco M.
        • Martin-Gil A.
        • Wang Z.
        • Rodriguez-Pomar C.
        • Pintor J.
        Post-lens tear turbidity and visual quality after scleral lens wear.
        Clin. Exp. Optom. 2017; (in press)
        • Bier N.
        Contact Lens Routine and Practice.
        Butterworths Scientific Publications, London1957
        • Marriott P.J.
        • Woodward E.G.
        A method of measuring the corneal clearance of a haptic lens.
        Br. J. Physiol. Opt. 1964; 21: 61-83
        • Marriott P.J.
        Ocular impressions and scleral lens fitting.
        in: Stone J. Phillips A.J. Contact Lenses. Barrie & Jenkins, London1972: 162-204
        • Ruben M.
        • Trodd T.
        Analysis of scleral lenses fitted to keratoconus patients.
        Cont. Intraocular. Lens Med. J. 1976; 2: 18-21
        • Woodward E.G.
        Preformed scleral lens fitting techniques.
        in: Stone J. Phillips A.J. Contact Lenses. Barrie & Jenkins, London1972: 205-234
        • Pullum K.W.
        The role of scleral lenses in modern contact lens practice.
        in: Phillips A.J. Speedwell L. Contact Lenses. Butterworth Heinemann, Oxford1997
        • Sonsino J.
        • Mathe D.S.
        Central vault in dry eye patients successfully wearing scleral lens.
        Optom. Vis. Sci. 2013; 9: e248-e251
        • Rathi V.M.
        • Mandathara P.S.
        • Dumpati S.
        • Sangwan V.S.
        Change in vault during scleral lens trials assessed with anterior segment optical coherence tomography.
        Cont. Lens Anterior Eye. 2017; 40: 157-161
        • Kauffman M.J.
        • Gilmartin C.A.
        • Bennett E.S.
        • Bassi C.J.
        A comparison of the short-term settling of three scleral lens designs.
        Optom. Vis. Sci. 2014; 91: 1462-1466
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        Miniscleral lens wear influences corneal curvature and optics.
        Ophthalmic Physiol. Opt. 2016; 36: 100-111
        • Caroline P.J.
        • Andre M.P.
        Scleral lens settling.
        Cont. Lens Spectr. 2012; 27: 56
        • Mountford J.
        Scleral contact lens settling rates.
        in: 10th Congress of the Orthokeratology Society of Oceania, Queensland, Australia2012
        • Visser E.S.
        • Van der Linden B.J.
        • Otten H.M.
        • Van der Lelij A.
        • Visser R.
        Medical applications and outcomes of bitangential scleral lenses.
        Optom. Vis. Sci. 2013; 90: 1078-1085
        • Courey C.
        • Michaud L.
        Variation of clearance considering viscosity of the solution used in the reservoir and following scleral lens wear over time.
        Cont. Lens Anterior Eye. 2017; (in press)
        • Vincent S.J.
        • Alonso-Caneiro D.
        • Collins M.J.
        • Beanland A.
        • Lam L.
        • Lim C.C.
        • Loke A.
        • Nguyen N.
        Hypoxic corneal changes following eight hours of scleral contact lens wear.
        Optom. Vis. Sci. 2016; 93: 293-299
        • Esen F.
        • Toker E.
        Influence of apical clearance on mini-scleral lens settling, clinical performance, and corneal thickness changes.
        Eye Cont. Lens. 2017; 43: 230-235
        • Read S.A.
        • Collins M.J.
        • Vincent S.J.
        • Alonso-Caneiro D.
        Macular retinal layer thickness in childhood.
        Retina. 2015; 35: 1223-1233
        • Alonso-Caneiro D.
        • Read S.A.
        • Collins M.J.
        Automatic segmentation of choroidal thickness in optical coherence tomography.
        Biomed. Opt. Express. 2013; 4: 2795-2812
        • Bland J.M.
        • Altman D.G.
        Measuring agreement in method comparison studies.
        Stat. Methods Med. Res. 1999; 8: 135-160
        • Pearson R.M.
        The refractive index of contact lens saline solutions.
        Cont. Lens Anterior Eye. 2013; 36: 136-139
      1. A.G. Bennett, Optics of Contact Lenses, Association of Dispensing Opticians, London, 1985.

        • Choi H.J.
        • Lee S.M.
        • Lee J.Y.
        • Lee S.Y.
        • Kim M.K.
        • Wee W.R.
        Measurement of anterior scleral curvature using anterior segment OCT.
        Optom. Vis. Sci. 2014; 91: 793-802
        • Pierro L.
        • Iuliano L.
        • Gagliardi M.
        • Ambrosi A.
        • Rama P.
        • Bandello F.
        Central corneal thickness reproducibility among ten different instruments.
        Optom. Vis. Sci. 2016; 93: 1371-1379
        • Read S.A.
        • Alonso-Caneiro D.
        • Vincent S.J.
        • Bremner A.
        • Fothergill A.
        • Ismail B.
        • McGraw R.
        • Quirk C.J.
        • Wrigley E.
        Anterior eye tissue morphology: scleral and conjunctival thickness in children and young adults.
        Sci. Rep. 2016; 6: 33796
        • Zhang X.
        • Li Q.
        • Xiang M.
        • Zou H.
        • Liu B.
        • Zhou H.
        • Han Z.
        • Fu Z.
        • Zhang Z.
        • Wang H.
        Bulbar conjunctival thickness measurements with optical coherence tomography in healthy chinese subjects.
        Invest. Ophthalmol. Vis. Sci. 2013; 54: 4705-4709
        • Bray C.
        • Britton S.
        • Yeung D.
        • Haines L.
        • Sorbara L.
        Changes in over-refraction after scleral lens settling on average corneas.
        Ophthalmic Phys. Opt. 2017; 37: 467-472
        • Sabesan R.
        • Johns L.
        • Tomashevskaya O.
        • Jacobs D.S.
        • Rosenthal P.
        • Yoon G.
        Wavefront-guided scleral lens prosthetic device for keratoconus.
        Optom. Vis. Sci. 2013; 90: 314-323
        • Marsack J.D.
        • Ravikumar A.
        • Nguyen C.
        • Ticak A.
        • Koenig D.E.
        • Elswick J.D.
        • Applegate R.A.
        Wavefront-guided scleral lens correction in keratoconus.
        Optom. Vis. Sci. 2014; 91: 1221-1230
        • Ticak A.
        • Marsack J.D.
        • Koenig D.E.
        • Ravikumar A.
        • Shi Y.
        • Nguyen L.C.
        • Applegate R.A.
        A comparison of three methods to increase scleral contact lens on-eye stability.
        Eye Cont. Lens. 2015; 41: 386-390
        • Lee S.M.
        • Choi H.J.
        • Choi H.
        • Kim M.K.
        • Wee W.R.
        Estimation of axial curvature of anterior sclera: correlation between axial length and anterior scleral curvature as affected by angle kappa.
        BMC Ophthalmol. 2016; 16: 176