An analysis of anterior scleral shape and its role in the design and fitting of scleral contact lenses

Published:November 10, 2017DOI:https://doi.org/10.1016/j.clae.2017.10.010

      Highlights

      • At a 10 mm chord, sagittal height values reflect with-the-rule corneal astigmatism.
      • The ocular surface is relatively more symmetric at a 12.8 mm chord.
      • Sagittal height measurements at a 15 mm chord reveal a rotationally asymmetric shape.
      • Scleral sagittal height at a 15 mm chord was found lowest nasal and highest temporal.
      • Corneo-scleral transition angles were more concave nasally and tangent temporally.

      Abstract

      Purpose

      The purpose of this study was to evaluate the shape of the anterior sclera by measuring the sagittal height and corneoscleral transition angles in the four cardinal and four oblique segments of the eye.

      Materials and methods

      In this study, 78 normal eyes of 39 subjects were evaluated. The sagittal height, corneoscleral angle and scleral angle were measured at three chord lengths (10.0 mm, 12.8 mm and 15.0 mm) in all eight segments of the anterior eye using optical coherence tomography (Zeiss Visante AS-OCT). Scleral toricity was calculated for each eye, defined as the greatest sagittal height difference found between two perpendicular meridians.

      Results

      At a 12.8 mm chord length, the shape of the anterior eye was found to be nearly rotationally symmetric, and at a chord of 15.0 mm the shape became more asymmetric. The average sagittal heights of the eight segments at a 12.8 mm chord ranged from 2890 μm to 2940 μm; at a 15.0 mm chord they ranged from 3680 μm to 3790 μm. The average scleral angles at a 15.0 mm chord ranged from 35.17° to 38.82°. Significant differences between opposing segments were found in the sagittal height and scleral angle measurements at a chord of 15.0 mm (sagittal height p ≤ 0.0021; scleral angle p ≤ 0.0105). The nasal measurements revealed flatter scleral angles and concave corneoscleral transitions, whereas temporal scleral angles were steeper, with tangential or convex corneoscleral transitions.

      Conclusion

      These findings are important to consider when designing and fitting contact lenses that rest beyond the boundaries of the limbus, such as scleral lenses.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Bennett E.S.
        • Weissman B.A.
        Clinical contact sens practice.
        Lippincott Williams & Wilkins, 2005
        • Gemoules G.
        A novel method of fitting scleral lenses using high resolution optical coherence tomography.
        Eye Contact Lens Sci Clin Pract. 2008; 34: 80-83
        • van der Worp E.
        A guide to scleral lens fitting [cited 2014 Jul 26].
        2010 (Available from:)
        • Schornack M.M.
        • Patel S.V.
        Relationship between corneal topographic indices and scleral lens base curve.
        Eye Contact Lens. 2010; 36: 330-333
        • Sorbara L.
        • Maram J.
        • Fonn D.
        • Woods C.
        • Simpson T.
        Metrics of the normal cornea: anterior segment imaging with the Visante OCT: metrics of the normal cornea.
        Clin Exp Optom. 2010; 93: 150-156
        • Hall L.A.
        • Young G.
        • Wolffsohn J.S.
        • Riley C.
        The influence of corneoscleral topography on soft contact lens fit.
        Invest Ophthalmol Vis Sci. 2011; 52: 6801-6806
        • Hall L.A.
        • Hunt C.
        • Young G.
        • Wolffsohn J.
        Factors affecting corneoscleral topography.
        Invest Ophthalmol Vis Sci. 2013; 54: 3691-3701
        • Sorbara L.
        • Maram J.
        • Mueller K.
        Use of the Visante™ OCT to measure the sagittal depth and scleral shape of keratoconus compared to normal corneae: pilot study.
        J Optom. 2013; 6: 141-146
        • Baldwin B.
        • Moyer S.
        AS-OCT and the specialty contact lens. Rev cornea contact lenses [cited 2017 Jun 8].
        2012 (Available from)
        • Caroline P.J.
        • André M.P.
        Scleral lenses do not center.
        Contact Lens Spectr. 2014; 29: 56
        • Le H.-G.T.
        • Tang M.
        • Ridges R.
        • Huang D.
        • Jacobs D.S.
        Pilot study for OCT guided design and fit of a prosthetic device for treatment of corneal disease.
        J Ophthalmol. 2012; 2012: 1-7
        • Kojima R.
        • Caroline P.J.
        • Graf T.
        • Kinoshita B.
        • Copilevitz L.
        • Achong-Coan R.
        • et al.
        Eye shape and scleral lenses.
        Contact Lens Spectr. 2013; 3: 8-43
        • Choi H.J.
        • Lee S.-M.
        • Lee J.Y.
        • Lee S.Y.
        • Kim M.K.
        • Wee W.R.
        Measurement of anterior scleral curvature using anterior segment OCT.
        Optom Vis Sci Off Publ Am Acad Optom. 2014; 91: 793-802
        • Ezekiel D.
        Gas permeable haptic lenses.
        J Br Contact Lens Assoc. 1983; 6: 158-161
        • Efron N.
        Contact lens practice.
        Elsevier Health Sciences, 2010
        • van der Worp E.
        • Bornman D.
        • Ferreira D.L.
        • Faria-Ribeiro M.
        • Garcia-Porta N.
        • González-Meijome J.M.
        Modern scleral contact lenses: a review.
        Contact Lens Anterior Eye. 2014; 37: 240-250
        • Schornack M.M.
        Scleral lenses: a literature review.
        Eye Contact Lens Sci Clin Pract. 2015; 41: 3-11
        • Compañ V.
        • Oliveira C.
        • Aguilella-Arzo M.
        • Mollá S.
        • Peixoto-de-Matos S.C.
        • González-Méijome J.M.
        Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses.
        Invest Ophthalmol Vis Sci. 2014; 55: 6421-6429
        • Romero-Rangel T.
        • Stavrou P.
        • Cotter J.
        • Rosenthal P.
        • Baltatzis S.
        • Foster C.S.
        Gas-permeable scleral contact lens therapy in ocular surface disease.
        Am J Ophthalmol. 2000; 130: 25-32
        • Rosenthal P.
        • Cotter J.M.
        • Baum J.
        Treatment of persistent corneal epithelial defect with extended wear of a fluid-ventilated gas-permeable scleral contact lens.
        Am J Ophthalmol. 2000; 130: 33-41
        • Rosenthal P.
        • Croteau A.
        Fluid-ventilated, gas-permeable scleral contact lens is an effective option for managing severe ocular surface disease and many corneal disorders that would otherwise require penetrating keratoplasty.
        Eye Contact Lens. 2005; 31: 130-134
        • Severinsky B.
        • Millodot M.
        Current applications and efficacy of scleral contact lenses—a retrospective study.
        J Optom. 2010; 3: 158-163
        • Schornack M.M.
        • Patel S.V.
        Scleral lenses in the management of keratoconus.
        Eye Contact Lens Sci Clin Pract. 2010; 36: 39-44
        • van der Worp E.
        Scleral lens case report series: beyond the corneal borders [cited 2014 Jul 26].
        2012 (Available from)
        • Weber S.L.P.
        • de Souza R.B.
        • Gomes J.Á.P.
        • Hofling-Lima A.L.
        The use of the esclera scleral contact lens in the treatment of moderate to severe dry eye disease.
        Am J Ophthalmol. 2016; 163 (e1): 167-173
        • Rathi V.
        • Taneja M.
        • Mandathara P.
        • Sangwan V.
        • Dumpati S.
        Scleral lens for keratoconus: technology update.
        Clin Ophthalmol. 2015; : 2013
        • Lee S.-M.
        • Choi H.J.
        • Choi H.
        • Kim M.K.
        • Wee W.R.
        Estimation of axial curvature of anterior sclera: correlation between axial length and anterior scleral curvature as affected by angle kappa.
        BMC Ophthalmol. 2016; 16https://doi.org/10.1186/s12886-016-0355-5
        • van der Worp E.
        • Graf T.
        • Caroline P.J.
        Exploring beyond the corneal borders.
        Contact Lens Spectr. 2010; 6: 26-32
        • Eugene W.
        Eugene Wolff’s Anatomy of the eye and orbit: including the central connexions, development, and comparative anatomy of the visual apparatus.
        7th ed. Saunders, Philadelphia1976 (/rev. by Roger Warwick)
        • Van Buskirk E.M.
        The anatomy of the limbus.
        Eye. 1989; : 101-108
        • Rüfer F.
        • Schröder A.
        • Erb C.
        White-to-white corneal diameter: normal values in healthy humans obtained with the Orbscan II topography system.
        Cornea. 2005; 24: 259-261
        • Iyamu E.
        • Osuobeni E.
        Age, gender, corneal diameter, corneal curvature and central corneal thickness in Nigerians with normal intra ocular pressure.
        J Optom. 2012; 5: 87-97
      1. M.J. Hogan, J.A. Alvarado, J.E. Weddell, Histology of the human eye: an atlas and textbook [by] Michael J. Hogan, Jorge A. Alvarado [and] Joan Esperson Weddell. Saunders, (1971).

        • Ray W.A.
        • O’day D.M.
        Statistical analysis of multi-eye data in ophthalmic research.
        Invest Ophthalmol Vis Sci. 1985; 26: 1186-1188
        • Marriott P.J.
        An analysis of the global contours and haptic contact lens fitting.
        Br J Physiol Opt. 1966; 23: 1-40
        • Apt L.
        An anatomical reevaluation of rectus muscle insertions.
        Trans Am Ophthalmol Soc. 1980; 78: 365
        • Villarreal-Silva E.E.
        • Hinojosa Amaya J.M.
        • Bazaldua Cruz J.J.
        • Martínez Fernández D.
        • Elizondo-Omaña R.E.
        • Guzmán López S.
        A morphometric study of the extraocular muscles.
        Int J Morphol. 2013; 31: 312-320
        • Mukhopadhyay S.
        • Chakraborty S.
        • Chatterjee M.
        • Datta H.
        A study on the insertion characteristics of the rectus muscles and its relation with the axial lengh of the eyebal in cadaveric eyes from an eastern indian population.
        Anat J Afr. 2014; 3: 26-267
        • Meier D.
        Das Cornea-Skleral-Profil – ein Kriterium individueller Kontaktlinsenanpassung.
        Kontaktlinse. 1992; 26: 4-11
        • Bokern S.
        • Hoppe M.
        • Bandlitz S.
        Genauigkeit und wiederholbarkeit bei der klassifizierung des corneoskleral profils.
        Kontaktlinse. 2007; : 7-8
        • Visser E.S.
        • Visser R.
        • Van Lier H.J.
        Advantages of toric scleral lenses.
        Optom Vis Sci. 2006; 83: 233-236
        • Sabesan R.
        • Johns L.
        • Tomashevskaya O.
        • Jacobs D.S.
        • Rosenthal P.
        • Yoon G.
        Wavefront-guided scleral lens prosthetic device for keratoconus.
        Optom Vis Sci. 2013; 90: 314-323
        • Marsack J.D.
        • Ravikumar A.
        • Nguyen C.
        • Ticak A.
        • Koenig D.E.
        • Elswick J.D.
        • et al.
        Wavefront-guided scleral lens correction in keratoconus.
        Optom Vis Sci. 2014; 91: 1221-1230
        • Hayashi K.
        • Hayashi H.
        • Hayashi F.
        Topographic analysis of the changes in corneal shape due to aging.
        Cornea. 1995; 14 (527–532)
        • Lee D.G.
        • Choi S.H.
        Measurement of anterior segment using Visante OCT in Koreans.
        J Korean Ophthalmol Soc. 2009; 50: 542
        • Qin B.
        • Zhou X.
        • Huang D.
        • Chu R.
        Effects of age on ocular anterior segment dimensions measured by optical coherence tomography.
        Chin Med J-Beijing. 2011; 124: 1829
        • Read S.A.
        • Collins M.J.
        • Carney L.G.
        The influence of eyelid morphology on normal corneal shape.
        Invest Ophthalmol Vis Sci. 2007; 48: 112-119
        • Read S.A.
        The topography of the central and peripheral cornea.
        Invest Ophthalmol Vis Sci. 2006; 47: 1404-1415
        • Read S.A.
        Corneal topography and the morphology of the palpebralfissure [cited 2015 Jul 7].
        2006 (Available from)
        • Wilson G.
        • Bell C.
        • Chotai S.
        The effect of lifting the lids on corneal astigmatism.
        Am J Optom Physiol Opt. 1982; 59: 670-674
        • Grey C.
        • Yap M.
        Influence of lid position on astigmatism.
        Optom Vis Sci. 1986; 63: 966-969
        • Hosny M.
        • Alio J.L.
        • Claramonte P.
        • Attia W.H.
        • Pérez-Santonja J.J.
        Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length.
        J Refract Surg. 2000; 16: 336-340
        • Baikoff G.
        • Jitsuo Jodai H.
        • Bourgeon G.
        Measurement of the internal diameter and depth of the anterior chamber: iOLMaster versus anterior chamber optical coherence tomographer.
        J Cataract Refract Surg. 2005; 31: 1722-1728
        • Yan P.-S.
        • Lin H.-T.
        • Wang Q.-L.
        • Zhang Z.-P.
        Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography.
        Ophthalmology. 2010; 117: 2301-2307