Advertisement
Research Article| Volume 39, ISSUE 2, P106-116, April 2016

Download started.

Ok

Global trends in myopia management attitudes and strategies in clinical practice

Published:February 16, 2016DOI:https://doi.org/10.1016/j.clae.2016.02.005

      Abstract

      Purpose

      Myopia is a global public health issue; however, no information exists as to how potential myopia retardation strategies are being adopted globally.

      Methods

      A self-administrated, internet-based questionnaire was distributed in six languages, through professional bodies to eye care practitioners globally. The questions examined: awareness of increasing myopia prevalence, perceived efficacy and adoption of available strategies, and reasons for not adopting specific strategies.

      Results

      Of the 971 respondents, concern was higher (median 9/10) in Asia than in any other continent (7/10, p < 0.001) and they considered themselves more active in implementing myopia control strategies (8/10) than Australasia and Europe (7/10), with North (4/10) and South America (5/10) being least proactive (p < 0.001). Orthokeratology was perceived to be the most effective method of myopia control, followed by increased time outdoors and pharmaceutical approaches, with under-correction and single vision spectacles felt to be the least effective (p < 0.05). Although significant intra-regional differences existed, overall most practitioners 67.5 (±37.8)% prescribed single vision spectacles or contact lenses as the primary mode of correction for myopic patients. The main justifications for their reluctance to prescribe alternatives to single vision refractive corrections were increased cost (35.6%), inadequate information (33.3%) and the unpredictability of outcomes (28.2%).

      Conclusions

      Regardless of practitioners’ awareness of the efficacy of myopia control techniques, the vast majority still prescribe single vision interventions to young myopes. In view of the increasing prevalence of myopia and existing evidence for interventions to slow myopia progression, clear guidelines for myopia management need to be established.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lin L.L.
        • Shih Y.F.
        • Hsiao C.K.
        • Chen C.J.
        Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000.
        Ann. Acad. Med. Singapore. 2004; 33: 27-33
        • Pan C.W.
        • Ramamurthy D.
        • Saw S.M.
        Worldwide prevalence and risk factors for myopia.
        Ophthalmic Physiol. Opt. 2012; 32: 3-16
        • Vitale S.
        • Sperduto R.D.
        • Ferris F.L.
        Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004.
        Arch. Ophthalmol. 2009; 127: 1632-1639
        • Edwards M.H.
        • Lam C.S.
        The epidemiology of myopia in Hong Kong.
        Ann. Acad. Med. Singapore. 2004; 33: 34-38
        • Goh W.S.
        • Lam C.S.
        Changes in refractive trends and optical components of Hong Kong Chinese aged 19–39 years.
        Ophthalmic Physiol. Opt. 1994; 14: 378-382
        • He M.
        • Zeng J.
        • Liu Y.
        • Xu J.
        • Pokharel G.P.
        • Ellwein L.B.
        Refractive error and visual impairment in urban children in southern China.
        Invest. Ophthalmol. Vis. Sci. 2004; 45: 793-799
        • Lin L.L.
        • Chen C.J.
        • Hung P.T.
        • Ko L.S.
        Nation-wide survey of myopia among schoolchildren in Taiwan, 1986.
        Acta Ophthalmol. Suppl. (Oxf). 1988; 185: 29-33
        • Ting P.W.
        • Lam C.S.
        • Edwards M.H.
        • Schmid K.L.
        Prevalence of myopia in a group of Hong Kong microscopists.
        Optom. Vis. Sci. 2004; 81: 88-93
        • Logan N.S.
        • Shah P.
        • Rudnicka A.R.
        • Gilmartin B.
        • Owen C.G.
        Childhood ethnic differences in ametropia and ocular biometry: the Aston Eye Study.
        Ophthalmic Physiol. Opt. 2011; 31: 550-558
        • Sperduto R.D.
        • Seigel D.
        • Roberts J.
        • Rowland M.
        Prevalence of myopia in the United States.
        Arch. Opththalmol. 1983; 101: 405-407
        • Vitale S.
        • Ellwein L.
        • Cotch M.F.
        • Ferris F.L.
        • Sperduto R.
        Prevalence of refractive error in the United States, 1999–2004.
        Arch. Opththalmol. 2008; 126: 1111-1119
        • Williams K.M.
        • Verhoeven V.J.M.
        • Cumberland P.
        • Bertelsen G.
        • Wolfram C.
        • Buitendijk G.H.S.
        • Hofman A.
        • Van Duijn C.M.
        • Vingerling J.R.
        • Kuijpers R.
        • Hohn R.
        • Mirshahi A.
        • Khawaja A.P.
        • Luben R.N.
        • Erke M.G.
        • Von Hanno T.
        • Mahroo O.
        • Hogg R.
        • Gieger C.
        • Cougnard-Gregoire A.
        • Anastasopoulos E.
        • Bron A.
        • Dartigues J.F.
        • Korobelnik J.F.
        • Creuzot-Garcher C.
        • Topouzis F.
        • Delcourt C.
        • Rahi J.
        • Meitinger T.
        • Fletcher A.
        • Foster P.J.
        • Pfeiffer N.
        • Klaver C.C.W.
        • Hammond C.J.
        Prevalence of refractive error in Europe: the European Eye Epidemiology (E-3) Consortium.
        Eur. J. Epidemiol. 2015; 30: 305-315
        • Liang Y.B.
        • Lin Z.
        • Vasudevan B.
        • Jhanji V.
        • Young A.
        • Gao T.Y.
        • Rong S.S.
        • Wang N.L.
        • Ciuffreda K.J.
        Generational difference of refractive error in the baseline study of the Beijing Myopia Progression Study.
        Br. J. Ophthalmol. 2013; 97: 765-769
        • Lin H.J.
        • Wan L.
        • Tsai F.J.
        • Tsai Y.Y.
        • Chen L.A.
        • Tsai A.L.
        • Huang Y.C.
        Overnight orthokeratology is comparable with atropine in controlling myopia.
        BMC Ophthalmol. 2014; 14
        • Lam C.S.Y.
        • Lam C.H.
        • Cheng S.C.K.
        • Chan L.Y.L.
        Prevalence of myopia among Hong Kong Chinese schoolchildren: changes over two decades.
        Ophthalmic Physiol. Opt. 2012; 32: 17-24
        • Brown N.
        • Hill A.R.
        Cataract: the relation between myopia and cataract morphology.
        Br. J. Ophthalmol. 1987; 71: 405-414
        • Flitcroft D.I.
        The complex interactions of retinal, optical and environmental factors in myopia aetiology.
        Prog. Retin. Eye Res. 2012; 31: 622-660
        • Leske M.C.
        • Connell A.
        • Wu S.Y.
        • Hyman L.G.
        • Schachat A.P.
        Risk factors for open-angle glaucoma: the Barbados Eye Study.
        Arch. Ophthalmol. 1995; 113: 918-924
        • Mitchell P.
        • Hourihan F.
        • Sandbach J.
        • Wang J.J.
        The relationship between glaucoma and myopia: the Blue Mountains Eye Study.
        Ophthalmology. 1999; 106: 2010-2015
        • Saw S.M.
        • Gazzard G.
        • Shih-Yen E.C.
        • Chua W.H.
        Myopia and associated pathological complications.
        Ophthalmic Physiol. Opt. 2005; 25: 381-391
        • Vongphanit J.
        • Mitchell P.
        • Wang J.J.
        Prevalence and progression of myopic retinopathy in an older population.
        Ophthalmology. 2002; 109: 704-711
      1. C.Y. Cheng, M. Schache, M.K. Ikram, T.L. Young, J.A. Guggenheim, V. Vitart, S. Macgregor, V.J. Verhoeven, V.A. Barathi, J. Liao, P.G. Hysi, J.E. Bailey-Wilson, B. St. Pourcain, J.P. Kemp, G. Mcmahon, N.J. Timpson, D.M. Evans, G.W. Montgomery, A. Mishra, Y.X. Wang, J.J. Wang, E. Rochtchina, O. Polasek, A.F. Wright, N. Amin, E.M. Van Leeuwen, J.F. Wilson, C.E. Pennell, C.M. Van Duijn, P.T. De Jong, J.R. Vingerling, X. Zhou, P. Chen, R. Li, W.T. Tay, Y. Zheng, M. Chew, E. Consortium for Refractive, Myopia, K.P. Burdon, J.E. Craig, S.K. Iyengar, R.P. Igo, Jr., J.H. Lass, Jr., G. Fuchs’ Genetics Multi-Center Study, E.Y. Chew, T. Haller, E. Mihailov, A. Metspalu, J. Wedenoja, C.L. Simpson, R. Wojciechowski, R. Hohn, A. Mirshahi, T. Zeller, N. Pfeiffer, K.J. Lackner, C. Wellcome Trust Case Control, T. Bettecken, T. Meitinger, K. Oexle, M. Pirastu, L. Portas, A. Nag, K.M. Williams, E. Yonova-Doing, R Klein, B.E. Klein, S.M. Hosseini, A.D. Paterson, C. Diabetes, I. Complications Trial/Epidemiology of Diabetes, G. Complications Research, K.M. Makela, T. Lehtimaki, M. Kahonen, O. Raitakari, N. Yoshimura, F. Matsuda, L.J. Chen, C.P. Pang, S.P. Yip, M.K. Yap, A. Meguro, N. Mizuki, H. Inoko, P.J. Foster, J.H. Zhao, E. Vithana, E.S. Tai, Q. Fan, L., Xu, H. Campbell, B. Fleck, I. Rudan, T. Aung, A. Hofman, A.G. Uitterlinden, G.Bencic, C.C. Khor, H., Forward, O. Parssinen, P. Mitchell, F. Rivadeneira, A.W. Hewitt, C. Williams, B.A. Oostra, Y.Y. Teo, C.J. Hammond, D. Stambolian, D.A. Mackey, C.C. Klaver, T.Y. Wong, S.M. Saw, P.N. Baird, Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error, Am. J. Hum. Genet., 93 (2013) 264–277.

        • Farbrother J.E.
        • Kirov G.
        • Owen M.J.
        • Pong-Wong R.
        • Haley C.S.
        • Guggenheim J.A.
        Linkage analysis of the genetic loci for high myopia on 18p 12q, and 17q in 51 UK families.
        Invest. Ophthalmol. Vis. Sci. 2004; 45: 2879-2885
        • Kurtz D.
        • Hyman L.
        • Gwiazda J.E.
        • Manny R.
        • Dong L.M.
        • Wang Y.
        • Scheiman M.
        Role of parental myopia in the progression of myopia and its interaction with treatment in COMET children.
        Invest. Ophthalmol. Vis. Sci. 2007; 48: 562
        • Mutti D.O.
        • Mitchell G.L.
        • Moeschberger M.L.
        • Jones L.A.
        • Zadnik K.
        Parental myopia near work, school achievement, and children’s refractive error.
        Invest. Ophthalmol. Vis. Sci. 2002; 43: 3633-3640
        • Pacella R.
        • Mclellan J.
        • Grice K.
        • Del Bono E.A.
        • Wiggs J.L.
        • Gwiazda J.E.
        Role of genetic factors in the etiology of juvenile-onset myopia based on a longitudinal study of refractive error.
        Optom. Vis. Sci. 1999; 76: 381-386
        • Zadnik K.
        Myopia development in childhood.
        Optom. Vis. Sci. 1997; 74: 603-608
        • Gwiazda J.
        • Thorn F.
        • Bauer J.
        • Held R.
        Myopic children show insufficient accommodative response to blur.
        Invest. Ophthalmol. Vis. Sci. 1993; 34: 690-694
        • Gwiazda J.
        • Bauer J.
        • Thorn F.
        • Held R.
        A dynamic relationship between myopia and blur-driven accommodation in school-aged children.
        Vision Res. 1995; 35: 1299-1304
        • Drobe B.
        • Desaintandre R.
        The pre-myopic syndrome.
        Ophthalmic Physiol. Opt. 1995; 15: 375-378
        • Gwiazda J.
        • Grice K.
        • Thorn F.
        Response AC/A ratios are elevated in myopic children.
        Ophthalmic Physiol. Opt. 1999; 19: 173-179
        • Ashton G.C.
        Nearwork, school achievement and myopia.
        J. Biosoc. Sci. 1985; 17: 223-233
        • Gwiazda J.
        • Deng L.
        • Dias L.
        • Marsh-Tootle W.
        • Grp C.S.
        Association of education and occupation with myopia in COMET parents.
        Optom. Vis. Sci. 2011; 88: 1045-1053
        • Ip J.M.
        • Saw S.M.
        • Rose K.A.
        • Morgan I.G.
        • Kijley A.
        • Wang J.J.
        • Mitchell P.
        Role of near work in myopia: findings in a sample of Australian school children.
        Invest. Ophthalmol. Vis. Sci. 2008; 49: 2903
        • Dirani M.
        • Tong L.
        • Gazzard G.
        • Zhang X.
        • Chia A.
        • Young T.L.
        • Rose K.A.
        • Mitchell P.
        • Saw S.-M.
        Outdoor activity and myopia in Singapore teenage children.
        Br. J. Ophthalmol. 2009; 93: 997-1000
        • French A.N.
        • Ashby R.S.
        • Morgan I.G.
        • Rose K.A.
        Time outdoors and the prevention of myopia.
        Exp. Eye Res. 2013; 114: 58-68
        • Guggenheim J.A.
        • Northstone K.
        • Mcmahon G.
        • Ness A.R.
        • Deere K.
        • Mattocks C.
        • St Pourcain B.
        • Williams C.
        Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study.
        Invest. Ophthalmol. Vis. Sci. 2012; 53: 2856
        • Rose K.A.
        • Morgan I.G.
        • Ip J.
        • Kifley A.
        • Huynh S.
        • Smith W.
        • Mitchell P.
        Outdoor activity reduces the prevalence of myopia in children.
        Ophthalmology. 2008; 115: 1279-1285
        • Rose K.A.
        • Morgan I.G.
        • Smith W.
        • Burlutsky G.
        • Mitchell P.
        • Saw S.M.
        Myopia lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney.
        Arch. Ophthalmol. 2008; 126: 527-530
        • Ashby R.
        • Ohlendorf A.
        • Schaeffel F.
        The effect of ambient illuminance on the development of deprivation myopia in chicks.
        Invest. Ophthalmol. Vis. Sci. 2009; 50: 5348-5354
        • Ashby R.S.
        • Schaeffel F.
        The effect of bright light on lens compensation in chicks.
        Invest. Ophthalmol. Vis. Sci. 2010; 51: 5247-5253
        • Hoogerheide J.
        • Rempt F.
        • Hoogenboom W.P.H.
        Acquired myopia in young pilots.
        Ophthalmologica. 1971; 163: 209-215
        • Logan N.S.
        • Gilmartin B.
        • Dunne M.
        Computation of retinal contour in anisomyopia.
        Ophthalmic Physiol. Opt. 1995; 15: 363-366
        • Millodot M.
        Effect of ametropia on peripheral refraction.
        Am. J. Optom. Physiol. Opt. 1981; 58: 691-695
        • Mutti D.O.
        • Hayes J.R.
        • Mitchell G.L.
        • Jones L.A.
        • Moeschberger M.L.
        • Cotter S.A.
        • Kleinstein R.N.
        • Manny R.E.
        • Twelker J.D.
        • Zadnik K.
        Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia.
        Invest. Ophthalmol. Vis. Sci. 2007; 48: 2510
        • Mutti C.
        • Jones L.A.
        • Moeschberger M.L.
        • Zadnik K.
        AC/A ratio, age, and refractive error in children.
        Am. J. Ophthalmol. 2000; 130: 690
        • Smith E.L.
        Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia.
        Optom. Vis. Sci. 2011; 88: 1029-1044
        • Smith E.L.
        • Hung L.F.
        • Huang J.
        Relative peripheral hyperopic defocus alters central refractive development in infant monkeys.
        Vision Res. 2009; 49: 2386-2392
        • Smith E.L.
        • Kee C.S.
        • Ramamirtham R.
        • Qiao-Grider Y.
        • Hung L.F.
        Peripheral vision can influence eye growth and refractive development in infant monkeys.
        Invest. Ophthalmol. Vis. Sci. 2005; 46: 3965-3972
        • Smith E.L.
        • Ramamirtham R.
        • Qiao-Grider Y.
        • Hung L.F.
        • Huang J.
        • Kee C.S.
        • Coats D.
        • Paysse E.
        Effects of foveal ablation on emmetropization and form-deprivation myopia.
        Invest. Ophthalmol. Vis. Sci. 2007; 48: 3914-3922
        • Sankaridurg P.
        • Holden B.
        Practical applications to modify and control the development of ametropia.
        Eye. 2014; 28: 134-141
        • Ogawa A.
        • Tanaka M.
        The relationship between refractive errors and retinal detachment–analysis of 1,166 retinal detachment cases.
        Jpn. J. Ophthalmol. 1987; 32: 310-315
        • Brennan N.A.
        Predicted reduction in high myopia for various degrees of myopia control.
        Cont. Lens Anterior Eye. 2012; 35: e14-e15
        • Wu P.C.
        • Tsai C.L.
        • Wu H.L.
        • Yang Y.H.
        • Kuo H.K.
        Outdoor activity during class recess reduces myopia onset and progression in school children.
        Ophthalmology. 2013; 120: 1080-1085
        • Tan D.T.
        • Lam D.S.
        • Chua W.H.
        • Shu-Ping D.F.
        • Crockett R.S.
        • Group A.P.S.
        One-year multicenter double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia.
        Ophthalmology. 2005; 112: 84-91
        • Chia A.
        • Chua W.H.
        • Cheung Y.B.
        • Wong W.L.
        • Lingham A.
        • Fong A.
        • Tan D.
        Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2).
        Ophthalmology. 2012; 119: 347-354
        • Adler D.
        • Millodot M.
        The possible effect of undercorrection on myopic progression in children.
        Clin. Exp. Optom. 2006; 89: 315-321
        • Chung K.
        • Mohidin N.
        D.J. O’leary, Undercorrection of myopia enhances rather than inhibits myopia progression.
        Vision Res. 2002; 42: 2555-2559
        • Cheng D.
        • Woo G.C.
        • Drobe B.
        • Schmid K.L.
        Effect of bifocal and prismatic bifocal spectacles on myopia progression in children three-year results of a randomized clinical trial.
        JAMA Ophthalmol. 2014; 132: 258-264
        • Fulk G.W.
        • Cyert L.A.
        • Parker D.E.
        A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria.
        Optom. Vis. Sci. 2000; 77: 395-401
        • Goss D.A.
        • Uyesugi E.
        Effectiveness of bifocal control of childhood myopia progression as a function of near point phoria and binocular cross-cylinder.
        J. Optom. Vis. Dev. 1995; 26: 12-17
        • Gwiazda J.
        • Chandler D.L.
        • Cotter S.A.
        • Everett D.F.
        • Hyman L.
        • Kaminski B.M.
        • Kulp M.T.
        • Lyon D.W.
        • Manny R.E.
        • Marsh-Tootle W.L.
        • Matta N.S.
        • Melia B.M.
        • Norton T.T.
        • Scheiman M.M.
        • Silbert D.I.
        • Weissberg A.E.M.
        Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 2749-2757
        • Yang Z.K.
        • Lan W.H.
        • Ge J.
        • Liu W.
        • Chen X.
        • Chen L.X.
        • Yu M.B.
        The effectiveness of progressive addition lenses on the progression of myopia in Chinese children.
        Ophthalmic Physiol. Opt. 2009; 29: 41-48
        • Gwiazda J.
        • Hyman L.
        • Hussein M.
        • Everett D.
        • Norton T.T.
        • Kurtz D.
        • Leske M.C.
        • Manny R.
        • Marsh-Tootle W.
        • Scheiman M.
        A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children.
        Invest. Ophthalmol. Vis. Sci. 2003; 44: 1492-1500
        • Edwards M.H.
        • Li R.W.H.
        • Lam C.S.Y.
        • Lew J.K.F.
        • Yu B.S.Y.
        The Hong Kong progressive lens myopia control study: study design and main findings.
        Invest. Ophthalmol. Vis. Sci. 2002; 43: 2852-2858
        • Leung J.T.M.
        • Brown B.
        Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses.
        Optom. Vis. Sci. 1999; 76: 346-354
        • Berntsen D.A.
        • Sinnott L.T.
        • Mutti D.O.
        • Zadnik K.
        A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation.
        Invest. Ophthalmol. Vis. Sci. 2012; 53: 640
        • Hasebe S.
        • Jun J.
        • Varnas S.R.
        Myopia control with positively aspherized progressive addition lenses: a 2-year multicenter, randomized, controlled trial.
        Invest. Ophthalmol. Vis. Sci. 2014; 55: 7177-7188
        • Sankaridurg P.
        • Donovan L.
        • Varnas S.
        • Ho A.
        • Chen X.
        • Martinez A.
        • Fisher S.
        • Lin Z.
        • Smith 3rd, E.L.
        • Ge J.
        • Holden B.
        Spectacle lenses designed to reduce progression of myopia: 12-month results.
        Optom. Vis. Sci. 2010; 87: 631-641
        • Sankaridurg P.
        • Holden B.
        • Smith E.
        • Naduvilath 3rd, T.
        • Chen X.
        • De La Jara P.L.
        • Martinez A.
        • Kwan J.
        • Ho A.
        • Frick K.
        • Ge J.
        Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 9362-9367
        • Anstice N.S.
        • Phillips J.R.
        Effect of dual-focus soft contact lens wear on axial myopia progression in children.
        Ophthalmology. 2011; 118: 1152-1161
        • Walline J.J.
        • Greiner K.L.
        • Mcvey M.E.
        • Jones-Jordan L.A.
        Multifocal contact lens myopia control.
        Optom. Vis. Sci. 2013; 90: 1207-1214
        • Pauné J.
        • Morales H.
        • Armengol J.
        • Quevedo L.
        • Faria-Ribeiro M.
        • González-Méijome J.M.
        Myopia control with a novel peripheral gradient soft lens and orthokeratology: a 2-year clinical trial.
        Biomed. Res. Int. 2015; 2015
        • Chen C.
        • Cheung S.W.
        • Cho P.
        Myopia control using toric orthokeratology (TO-SEE study).
        Invest. Ophthalmol. Vis. Sci. 2013; 54: 6510-6517
        • Cho P.
        • Cheung S.W.
        Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial.
        Invest. Ophthalmol. Vis. Sci. 2012; 53: 7077-7085
        • Walline J.J.
        • Jones L.A.
        • Sinnott L.T.
        Corneal reshaping and myopia progression.
        Br. J. Ophthalmol. 2009; 93: 1181-1185
        • Lin Z.
        • Martinez A.
        • Chen X.
        • Li L.
        • Sankaridurg P.
        • Holden B.A.
        • Ge J.
        Peripheral defocus with single-vision spectacle lenses in myopic children.
        Optom. Vis. Sci. 2010; 87: 4-9
        • Smith E.L.
        • Huang J.
        • Hung L.F.
        • Blasdel T.L.
        • Humbird T.L.
        • Bockhorst K.H.
        Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys.
        Invest. Ophthalmol. Vis. Sci. 2009; 50: 5057-5069
        • Atchison D.A.
        • Li S.-M.
        • Li H.
        • Li S.-Y.
        • Liu L.-R.
        • Kang M.-T.
        • Meng B.
        • Sun Y.-Y.
        • Zhan S.-Y.
        • Mitchell P.
        Relative peripheral hyperopia does not predict development and progression of myopia in children.
        Invest. Ophthalmol. Vis. Sci. 2015; 56: 6162-6170
        • Mutti D.O.
        • Sinnott L.T.
        • Mitchell G.L.
        • Jones-Jordan L.A.
        • Moeschberger M.L.
        • Cotter S.A.
        • Kleinstein R.N.
        • Manny R.E.
        • Twelker J.D.
        • Zadnik K.
        Relative peripheral refractive error and the risk of onset and progression of myopia in children.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 199
        • Shih Y.F.
        • Hsiao C.K.
        • Chen C.J.
        • Chang C.W.
        • Hung P.T.
        • Lin L.L.K.
        An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression.
        Acta Ophthalmol. Scand. 2001; 79: 233-236
        • Hasebe S.
        • Ohtsuki H.
        • Nonaka T.
        • Nakatsuka C.
        • Miyata M.
        • Hamasaki I.
        • Kimura S.
        Effect of progressive addition lenses on myopia progression in Japanese children: a prospective randomized, double-masked, crossover trial.
        Invest. Ophthalmol. Vis. Sci. 2008; 49: 2781-2789
        • Yang Z.
        • Lan W.
        • Ge J.
        • Liu W.
        • Chen X.
        • Chen L.
        • Yu M.
        The effectiveness of progressive addition lenses on the progression of myopia in Chinese children.
        Ophthalmic Physiol. Opt. 2009; 29: 41-48
        • Shaikh A.W.
        • Siegwart Jr., J.T.
        • Norton T.T.
        Effect of interrupted lens wear on compensation for a minus lens in tree shrews.
        Optom. Vis. Sci. 1999; 76: 308-315
        • Smith E.L.
        • Hung L.F.
        • Harwerth R.S.
        Developmental visual system anomalies and the limits of emmetropization.
        Ophthalmic Physiol. Opt. 1999; 19: 90-102
        • Horner D.G.
        • Soni P.S.
        • Salmon T.O.
        • Swartz T.S.
        Myopia progression in adolescent wearers of soft contact lenses and spectacles.
        Optom. Vis. Sci. 1999; 76: 474-479
        • Walline J.J.
        • Jones L.A.
        • Mutti D.O.
        • Zadnik K.
        A randomized trial of the effects of rigid contact lenses on myopia progression.
        Arch. Ophthalmol. 2004; 122: 1760-1766
        • Walline J.J.
        • Jones L.A.
        • Sinnott L.
        • Manny R.E.
        • Gaume A.
        • Rah M.J.
        • Chitkara M.
        • Lyons S.
        A randomized trial of the effect of soft contact lenses on myopia progression in children.
        Invest. Ophthalmol. Vis. Sci. 2008; 49: 4702-4706
        • Katz J.
        • Schein O.D.
        • Levy B.
        • Cruiscullo T.
        • Saw S.-M.
        • Rajan U.
        • Chan T.-K.
        • Khoo C.Y.
        • Chew S.-J.
        A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia.
        Am. J. Ophthalmol. 2003; 136: 82-90
        • Khoo C.Y.
        • Chong J.
        • Rajan U.
        A 3-year study on the effect of RGP contact lenses on myopic children.
        Singapore Med. J. 1999; 40: 230-237
        • Aller T.A.
        • Wildsoet C.
        Bifocal soft contact lenses as a possible myopia control treatment: a case report involving identical twins.
        Clin. Exp. Optom. 2008; 91: 394-399
        • Lam C.S.Y.
        • Tang W.C.
        • Tse D.Y.Y.
        • Tang Y.Y.
        • To C.H.
        Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial.
        Br. J. Ophthalmol. 2014; 98: 40-45
        • Gonzalez-Meijome J.M.
        • Carracedo G.
        • Lopes-Ferreira D.
        • Faria-Ribeiro M.A.
        • Peixoto-De-Matos S.C.
        • Queiros A.
        Stabilization in early adult-onset myopia with corneal refractive therapy.
        Cont. Lens Anterior Eye. 2016; 39: 72-77
        • Chua W.-H.
        • Balakrishnan V.
        • Chan Y.-H.
        • Tong L.
        • Ling Y.
        • Quah B.-L.
        • Tan D.
        Atropine for the treatment of childhood myopia.
        Ophthalmology. 2006; 113: 2285-2291
        • Siatkowski R.M.
        • Cotter S.
        • Miller J.M.
        • Scher C.A.
        • Crockett R.S.
        • Novack G.D.
        Safety and efficacy of 2% pirenzepine ophthalmic gel in children WithMyopia: a 1-year multicenter, double-masked, placebo-controlled parallel study.
        Arch. Ophthalmol. 2004; 122: 1667-1674
        • Siatkowski R.M.
        • Cotter S.A.
        • Crockett R.
        • Miller J.M.
        • Novack G.D.
        • Zadnik K.
        • Group U.P.S.
        Two-year multicenter randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepineophthalmicgelinchildrenwithmyopia.
        J. AAPOS. 2008; 12: 332-339
        • Chia A.
        • Lu Q.S.
        • Tan D.
        Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops.
        Ophthalmology. 2015;
        • Tong L.
        • Huang X.L.
        • Koh A.L.
        • Zhang X.
        • Tan D.T.
        • Chua W.-H.
        Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine.
        Ophthalmology. 2009; 116: 572-579
        • Lee Y.Y.
        • Lo C.T.
        • Sheu S.J.
        • Lin J.L.
        What factors are associated with myopia in young adults? A survey study in Taiwan Military Conscripts.
        Invest. Ophthalmol. Vis. Sci. 2013; 54: 1026-1033
        • Parssinen O.
        • Kauppinen M.
        • Viljanen A.
        The progression of myopia from its onset at age 8–12 to adulthood and the influence of heredity and external factors on myopic progression. A 23-year follow-up study.
        Acta Ophthalmol. 2014; 92: 730-739
        • Ramessur R.
        • Williams K.M.
        • Hammond C.J.
        Risk factors for myopia in a discordant monozygotic twin study.
        Ophthalmic Physiol. Opt. 2015; 35: 643-651
        • Sherwin J.C.
        • Reacher M.H.
        • Keogh R.H.
        • Khawaja A.P.
        • Mackey D.A.
        • Foster P.J.
        The association between time spent outdoors and myopia in children and adolescents a systematic review and meta-analysis.
        Ophthalmology. 2012; 119: 2141-2151
        • Mutti D.O.
        • Cooper M.E.
        • Dragan E.
        • Jones-Jordan L.A.
        • Bailey M.D.
        • Marazita M.L.
        • Murray J.C.
        • Zadnik K.
        • Grp C.S.
        Vitamin d receptor (VDR) and group-specific component (GC, vitamin D-binding protein) polymorphisms in myopia.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 3818-3824
        • Nichols J.J.
        Contact lenses 2015.
        Contact Lens Spectrum. 2016; 31: 18-23
        • Montes-Mico R.
        • Ferrer-Blasco T.
        Distribution of refractive errors in Spain.
        Doc. Ophthalmol. 2000; 101: 25-33
        • Jorge J.
        • Almeida J.B.
        • Parafita M.A.
        Refractive, biometric and topographic changes among Portuguese university science students: a 3-year longitudinal study.
        Ophthalmic Physiol. Opt. 2007; 27: 287-294
        • Hendricks T.J.W.
        • De Brabander J.
        • Vankan-Hendricks M.H.P.
        • Van Der Horst F.G.
        • Hendrikse F.
        • Knottnerus J.A.
        Prevalence of habitual refractive errors and anisometropia among Dutch schoolchildren and hospital employees.
        Acta Ophthalmol. 2009; 87: 538-543
        • Zadnik K.
        • Sinnott L.T.
        • Cotter S.A.
        • Jones-Jordan L.A.
        • Kleinstein R.N.
        • Manny R.E.
        • Twelker J.D.
        • Mutti D.O.
        • Collaborative Longitudinal E.
        Prediction of juvenile-onset myopia.
        JAMA Ophthalmol. 2015; 133: 683-689
        • Dong L.M.
        • Fazzari M.
        • Gwiazda J.
        • Hyman L.
        • Norton T.
        • Thorn F.
        • Zhang Q.H.
        • Grp C.S.
        Myopia stabilization and associated factors among participants in the correction of myopia evaluation trial (COMET).
        Invest. Ophthalmol. Vis. Sci. 2013; 54: 7871-7883
        • Thorn F.
        • Gwiazda J.
        • Held R.
        Myopia progression is specified by a double exponential growth function.
        Optom. Vis. Sci. 2005; 82: 286-297
        • Cheung S.W.
        • Lam C.
        • Cho P.
        Parents’ knowledge and perspective of optical methods for myopia control in children.
        Optom. Vis. Sci. 2014; 91: 634-641