Advertisement

Acute and short-term changes in visual function with multifocal soft contact lens wear in young adults

Published:October 15, 2015DOI:https://doi.org/10.1016/j.clae.2015.09.004

      Abstract

      Purpose

      To characterise the effects on accommodation and binocular vision in young adults of 2 distance centre multifocal soft contact lenses (MFSCLs), differing in add power.

      Methods

      Twenty-four young adult myopes (18–28 years; 20 females, 4 males) had baseline visual acuity, accommodation, near phoria, fixation disparity and stereopsis data collected with single vision (SV) SCLs. The same set of measurements was repeated immediately after subjects were fitted with each of two MFSCLs (with either +1.50 or +3.00 D add), and after 2 weeks of daily wear in each case. The order of testing was randomised and a one-week washout period was allowed between the first and second MFSCL trials.

      Results

      Differences in distance and near acuities with MFSCLs compared to SVSCLs were small and clinically insignificant. Compared to responses with SVSCLs, MFSCLs increased accommodative lags with this change reaching statistical significance for the +1.50 D add lens. Furthermore, both MFSCLs induced significant shifts in near phorias in the exo direction. Finally, there were no significant differences in stereopsis and fixation disparity with MFSCLs compared to SVSCLs.

      Conclusion

      Differences in acuities, accommodation accuracy and binocular posture with MFSCLs compared to SVSCLs were clinically small and mostly not significant. These results predict good tolerance of MFSCLs in young patients fitted with them for myopia control.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Contact Lens and Anterior Eye
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vitale S.
        • Sperduto R.D.
        • Ferris 3rd., F.L.
        Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004.
        Arch. Ophthalmol. 2009; 127: 1632-1639
        • Saw S.M.
        • Tong L.
        • Chua W.H.
        • Chia K.S.
        • Koh D.
        • Tan D.T.
        • et al.
        Incidence and progression of myopia in Singaporean school children.
        Invest. Ophthalmol. Vis. Sci. 2005; 46: 51-57
        • Edwards M.H.
        The development of myopia in Hong Kong children between the ages of 7 and 12 years: a five-year longitudinal study.
        Ophthalmic Physiol. Opt. 1999; 19: 286-294
        • Iwase A.
        • Araie M.
        • Tomidokoro A.
        • Yamamoto T.
        • Shimizu H.
        • Kitazawa Y.
        Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi study.
        Ophthalmology. 2006; 113: 1354-1362.e1
        • Klaver C.C.
        • Wolfs R.C.
        • Vingerling J.R.
        • Hofman A.
        • de Jong P.T.
        Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam study.
        Arch. Ophthalmol. 1998; 116: 653-658
        • Liu J.H.
        • Cheng C.Y.
        • Chen S.J.
        • Lee F.L.
        Visual impairment in a Taiwanese population: prevalence, causes, and socioeconomic factors.
        Ophthalmic Epidemiol. 2001; 8: 339-350
        • Tabernero J.
        • Vazquez D.
        • Seidemann A.
        • Uttenweiler D.
        • Schaeffel F.
        Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction.
        Vision Res. 2009; 49: 2176-2186
        • Sankaridurg P.
        • Donovan L.
        • Varnas S.
        • Ho A.
        • Chen X.
        • Martinez A.
        • et al.
        Spectacle lenses designed to reduce progression of myopia: 12-month results.
        Optom. Vis. Sci. 2010; 87: 631-641
        • Anstice N.S.
        • Phillips J.R.
        Effect of Dual-Focus soft contact lens wear on axial myopia progression in children.
        Ophthalmology. 2011; 118: 1152-1161
        • Lam C.S.
        • Tang W.C.
        • Tse D.Y.
        • Tang Y.Y.
        • To C.H.
        Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial.
        Br. J. Ophthalmol. 2014; 98: 40-45
        • Sankaridurg P.
        • Holden B.
        • Smith 3rd., E.
        • Naduvilath T.
        • Chen X.
        • de la Jara P.L.
        • et al.
        Decrease in rate of myopia progression with a contact lens designed to reduce relative peripheral hyperopia: one-year results.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 9362-9367
        • Walline J.J.
        • Jones L.A.
        • Sinnott L.T.
        Corneal reshaping and myopia progression.
        Br. J. Ophthalmol. 2009; 93: 1181-1185
        • Santodomingo-Rubido J.
        • Villa-Collar C.
        • Gilmartin B.
        • Gutierrez-Ortega R.
        Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes.
        Invest. Ophthalmol. Vis. Sci. 2012; 53: 5060-5065
        • Kakita T.
        • Hiraoka T.
        • Oshika T.
        Influence of overnight orthokeratology on axial elongation in childhood myopia.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 2170-2174
        • Cho P.
        • Cheung S.W.
        Retardation of Myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial.
        Invest. Ophthalmol. Vis. Sci. 2012; 53: 7077-7085
        • Swarbrick H.A.
        • Alharbi A.
        • Watt K.
        • Lum E.
        • Kang P.
        Myopia control during orthokeratology lens wear in children using a novel study design.
        Ophthalmology. 2015; 122: 620-630
        • Irving E.L.
        • Callender M.G.
        • Sivak J.G.
        Inducing ametropias in hatchling chicks by defocus–aperture effects and cylindrical lenses.
        Vision Res. 1995; 35: 1165-1174
        • Wildsoet C.
        • Wallman J.
        Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks.
        Vision Res. 1995; 35: 1175-1194
        • Wallman J.
        • Wildsoet C.
        • Xu A.
        • Gottlieb M.D.
        • Nickla D.L.
        • Marran L.
        • et al.
        Moving the retina: choroidal modulation of refractive state.
        Vision Res. 1995; 35: 37-50
        • Smith 3rd., E.L.
        • Hung L.F.
        The role of optical defocus in regulating refractive development in infant monkeys.
        Vision Res. 1999; 39: 1415-1435
        • Gwiazda J.
        • Thorn F.
        • Held R.
        Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children.
        Optom. Vis. Sci. 2005; 82: 273-278
        • McBrien N.A.
        • Millodot M.
        The effect of refractive error on the accommodative response gradient.
        Ophthalmic Physiol. Opt. 1986; 6: 145-149
        • Tarrant J.
        • Severson H.
        • Wildsoet C.F.
        Accommodation in emmetropic and myopic young adults wearing bifocal soft contact lenses.
        Ophthalmic Physiol. Opt. 2008; 28: 62-72
        • Berntsen D.A.
        • Mutti D.O.
        • Zadnik K.
        The effect of bifocal add on accommodative lag in myopic children with high accommodative lag.
        Invest. Ophthalmol. Vis. Sci. 2010; 51: 6104-6110
        • Cheng D.
        • Schmid K.L.
        • Woo G.C.
        The effect of positive-lens addition and base-in prism on accommodation accuracy and near horizontal phoria in Chinese myopic children.
        Ophthalmic. Physiol. Opt. 2008; 28: 225-237
        • Gwiazda J.
        • Hyman L.
        • Hussein M.
        • Everett D.
        • Norton T.T.
        • Kurtz D.
        • et al.
        A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children.
        Invest. Ophthalmol. Vis. Sci. 2003; 44: 1492-1500
        • Walline J.J.
        • Greiner K.L.
        • McVey M.E.
        • Jones-Jordan L.A.
        Multifocal contact lens myopia control.
        Optom. Vis. Sci. 2013; 90: 1207-1214
      1. Correction of Myopia Evaluation Trial 2 Study Group for the Pediatric Eye Disease Investigator Group. Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria. Invest Ophthalmol Vis Sci. 2011; 52: 2749–2757.

        • Aller T.A.
        • Wildsoet C.
        Results of a one-year prospective clinical trial (CONTROL) of the use of bifocal soft soft contact lenses to control myopia progression.
        Ophthalmic Physiol. Opt. 2006; 26: 8-9
        • Aller T.A.
        • Wildsoet C.
        Bifocal soft contact lenses as a possible myopia control treatment: a case report involving identical twins.
        Clin. Exp. Optom. 2008; 91: 394-399
        • Tarrant J.
        • Liu Y.
        • Wildsoet C.
        Orthokeratology can decrease accommodative lag in myopes.
        Invest. Ophthalmol. Vis. Sci. 2009; 50 (E-Abstract 4294)
        • Smith 3rd., E.L.
        • Kee C.S.
        • Ramamirtham R.
        • Qiao-Grider Y.
        • Hung L.F.
        Peripheral vision can influence eye growth and refractive development in infant monkeys.
        Invest. Ophthalmol. Vis. Sci. 2005; 46: 3965-3972
        • Liu Y.
        • Wildsoet C.
        The effect of two-zone concentric bifocal spectacle lenses on refractive error development and eye growth in young chicks.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 1078-1086
        • Smith 3rd., E.L.
        • Hung L.F.
        • Huang J.
        Relative peripheral hyperopic defocus alters central refractive development in infant monkeys.
        Vision Res. 2009; 49: 2386-2392
        • Benavente-Perez A.
        • Nour A.
        • Troilo D.
        The effect of simultaneous negative and positive defocus on eye growth and development of refractive state in marmosets.
        Invest. Ophthalmol. Vis. Sci. 2012; 53: 6479-6487
        • Liu Y.
        • Wildsoet C.
        The effective add inherent in 2-zone negative lenses inhibits eye growth in myopic young chicks.
        Invest. Ophthalmol. Vis. Sci. 2012; 53: 5085-5093
        • Charman W.N.
        • Mountford J.
        • Atchison D.A.
        • Markwell E.L.
        Peripheral refraction in orthokeratology patients.
        Optom. Vis. Sci. 2006; 83: 641-648
        • Kang P.
        • Swarbrick H.
        Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses.
        Optom. Vis. Sci. 2011; 88: 476-482
        • Smith 3rd., E.L.
        Prentice Award Lecture 2010: a case for peripheral optical treatment strategies for myopia.
        Optom. Vis. Sci. 2011; 88: 1029-1044
        • Jones L.W.
        • Dumbleton K.
        Soft contact lens fitting.
        in: Phillips A.J. Speedwell L. Contact Lenses. 5th ed. Butterworth-Heinemann/Elsevier, Edinburgh2007: 223-240
        • Grosvenor T.
        Primary Care Optometry.
        5th ed. Butterworth-Heinemann/Elsevier, St Louis. MO2007
        • Rosenfield M.
        Subjective refraction.
        in: Rosenfield M. Logan N. Optometry: Science, Techniques and Clinical Management. 2nd ed. Butterworth Heinemann, Edinburgh2009: 209-228
        • Thibos L.N.
        • Wheeler W.
        • Horner D.
        Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error.
        Optom. Vis. Sci. 1997; 74: 367-375
        • Salmon T.O.
        • West R.W.
        • Gasser W.
        • Kenmore T.
        Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer.
        Optom. Vis. Sci. 2003; 80: 6-14
        • Tarrant J.
        • Roorda A.
        • Wildsoet C.F.
        Determining the accommodative response from wavefront aberrations.
        J. Vis. 2010; 10: 4
        • Marron J.A.
        • Bailey I.L.
        Visual factors and orientation-mobility performance.
        Am. J. Optom. Physiol. Opt. 1982; 59: 413-426
        • Poulere E.
        • Moschandreas J.
        • Kontadakis G.A.
        • Pallikaris I.G.
        • Plainis S.
        Effect of blur and subsequent adaptation on visual acuity using letter and Landolt C charts: differences between emmetropes and myopes.
        Ophthalmic Physiol. Opt. 2013; 33: 130-137
        • Mon-Williams M.
        • Tresilian J.R.
        • Strang N.C.
        • Kochhar P.
        • Wann J.P.
        Improving vision: neural compensation for optical defocus.
        Proc. Biol. Sci. 1998; 265: 71-77
        • Fernandes P.R.
        • Neves H.I.
        • Lopes-Ferreira D.P.
        • Jorge J.M.
        • Gonzalez-Meijome J.M.
        Adaptation to multifocal and monovision contact lens correction.
        Optom. Vis. Sci. 2013; 90: 228-235
        • Ferrer-Blasco T.
        • Madrid-Costa D.
        Stereoacuity with balanced presbyopic contact lenses.
        Clin. Exp. Optom. 2011; 94: 76-81
        • Gwiazda J.
        • Thorn F.
        • Bauer J.
        • Held R.
        Myopic children show insufficient accommodative response to blur.
        Invest. Ophthalmol. Vis. Sci. 1993; 34: 690-694
        • Gu Y.C.
        • Legge G.E.
        Accommodation to stimuli in peripheral vision.
        J. Opt. Soc. Am. A. 1987; 4: 1681-1687
        • Bullimore M.A.
        • Gilmartin B.
        Retinal eccentricity and the accommodative response.
        Am. J. Optom. Physiol. Opt. 1987; 64: 644-645
        • Hennessy R.
        • Leibowitz H.
        The effect of a peripheral stimulus on accommodation.
        Percept. Psychophys. 1971; 10: 129-132
        • Lewis P.R.
        • Baskaran K.
        • Rosén R.
        • Lundström L.
        • Unsbo P.
        • Gustafsson J.
        Objectively determined refraction improves perpiheral vision.
        Optom. Vis. Sci. 2014; 91: 740-746
        • Atchison D.A.
        • Pritchard N.
        • Schmid K.L.
        Peripheral refraction along the horizontal and vertical visual fields in myopia.
        Vision Res. 2006; 46: 1450-1458
        • Ehsaei A.
        • Mallen E.A.
        • Chisholm C.M.
        • Pacey I.E.
        Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes.
        Invest. Ophthalmol. Vis. Sci. 2011; 52: 7574-7585
        • Jiang B.C.
        • Tea Y.C.
        • O’Donnell D.
        Changes in accommodative and vergence responses when viewing through near addition lenses.
        Optometry. 2007; 78: 129-134
        • Scheiman M.
        • Mitchell G.L.
        • Cotter S.
        • Cooper J.
        • Kulp M.
        • Rouse M.
        • et al.
        A randomized clinical trial of treatments for convergence insufficiency in children.
        Arch. Ophthalmol. 2005; 123: 14-24
        • Pickwell L.D.
        • Hampshire R.
        The significance of inadequate convergence.
        Ophthalmic Physiol. Opt. 1981; 1: 13-18
        • Cheng D.
        • Woo G.C.
        • Drobe B.
        • Schmid K.L.
        Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial.
        JAMA Ophthalmol. 2014; 132: 258-264